Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Amer Hameed
Documents disponibles écrits par cet auteur
Affiner la rechercheTransient thermal analyses of midwall cooling and external cooling methods for a gun barrel / Avanish Mishra in Journal of heat transfer, Vol. 132 N° 9 (Septembre 2010)
[article]
in Journal of heat transfer > Vol. 132 N° 9 (Septembre 2010) . - pp. [091901-1/8]
Titre : Transient thermal analyses of midwall cooling and external cooling methods for a gun barrel Type de document : texte imprimé Auteurs : Avanish Mishra, Auteur ; Amer Hameed, Auteur ; Bryan Lawton, Auteur Article en page(s) : pp. [091901-1/8] Note générale : Physique Langues : Anglais (eng) Mots-clés : Cook-off External cooling Gun barrel Howitzer Midwall cooling Temperature history Index. décimale : 536 Chaleur. Thermodynamique Résumé : Liquid cooling methods are often used for thermal management of a large caliber gun barrel. In this work, transient thermal analyses of midwall-cooled and externally cooled gun barrels were performed. At first, a novel simulation scheme was developed for the computation of the gun barrel temperature history (temperature variation over time), and its experimental validation was performed. In the computational scheme an internal ballistics code, GUNTEMP8.EXE, was developed to simulate the total heat transfer per cycle for the given ammunition parameters. Subsequently, a finite element (FE) model of the barrel was developed in ANSYS 11.0. Heat transfer to the barrel was approximated by an exponentially decaying heat flux. The FE model was solved to compute for barrel temperature history. Simulations were performed for a burst of 9 cycles, and the results were found to agree with the experimental measurements. Subsequently, the simulation scheme was extended to analyze a burst of 40 cycles at 10 shots per minute (spm). Three cases were investigated as follows: (1) a naturally cooled gun barrel, (2) a gun barrel with midwall cooling channels, and (3) an externally cooled gun barrel. Natural cooling was found insufficient to prevent cook-off, whereas midwall and external cooling methods were found to eliminate any possibility of it. In the context of a self-propelled howitzer, a midwall-cooled gun barrel connected to an engine cooling system was also analyzed.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=JHTRAO&ONLINE=YES&smode= [...] [article] Transient thermal analyses of midwall cooling and external cooling methods for a gun barrel [texte imprimé] / Avanish Mishra, Auteur ; Amer Hameed, Auteur ; Bryan Lawton, Auteur . - pp. [091901-1/8].
Physique
Langues : Anglais (eng)
in Journal of heat transfer > Vol. 132 N° 9 (Septembre 2010) . - pp. [091901-1/8]
Mots-clés : Cook-off External cooling Gun barrel Howitzer Midwall cooling Temperature history Index. décimale : 536 Chaleur. Thermodynamique Résumé : Liquid cooling methods are often used for thermal management of a large caliber gun barrel. In this work, transient thermal analyses of midwall-cooled and externally cooled gun barrels were performed. At first, a novel simulation scheme was developed for the computation of the gun barrel temperature history (temperature variation over time), and its experimental validation was performed. In the computational scheme an internal ballistics code, GUNTEMP8.EXE, was developed to simulate the total heat transfer per cycle for the given ammunition parameters. Subsequently, a finite element (FE) model of the barrel was developed in ANSYS 11.0. Heat transfer to the barrel was approximated by an exponentially decaying heat flux. The FE model was solved to compute for barrel temperature history. Simulations were performed for a burst of 9 cycles, and the results were found to agree with the experimental measurements. Subsequently, the simulation scheme was extended to analyze a burst of 40 cycles at 10 shots per minute (spm). Three cases were investigated as follows: (1) a naturally cooled gun barrel, (2) a gun barrel with midwall cooling channels, and (3) an externally cooled gun barrel. Natural cooling was found insufficient to prevent cook-off, whereas midwall and external cooling methods were found to eliminate any possibility of it. In the context of a self-propelled howitzer, a midwall-cooled gun barrel connected to an engine cooling system was also analyzed.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=JHTRAO&ONLINE=YES&smode= [...]