Détail de l'auteur
Auteur S. Joe Qin |
Documents disponibles écrits par cet auteur (2)



Feedback - invariant approach to time - delay estimation for performance monitoring / Christopher A. Harrison in Industrial & engineering chemistry research, Vol. 51 N° 26 (Juillet 2012)
![]()
[article]
Titre : Feedback - invariant approach to time - delay estimation for performance monitoring Type de document : texte imprimé Auteurs : Christopher A. Harrison, Auteur ; S. Joe Qin, Auteur Année de publication : 2012 Article en page(s) : pp. 9094-9100 Note générale : Industrial chemistry Langues : Anglais (eng) Mots-clés : Surveillance Feedback Résumé : A simple time-delay estimation approach that requires temporarily retuning the existing PID controller is presented. Closed-loop output data are fitted with autoregressive moving average models at two different controller tunings. The time delay is determined by using the feedback-invariance principle that the closed-loop impulse response coefficients do not change inside the time-delay window. This approach requires no intervention to plant operation and does not estimate the open-loop process model but the time delay only. The estimated time delay is particularly suitable for use in control performance monitoring. ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=26107465
in Industrial & engineering chemistry research > Vol. 51 N° 26 (Juillet 2012) . - pp. 9094-9100[article] Feedback - invariant approach to time - delay estimation for performance monitoring [texte imprimé] / Christopher A. Harrison, Auteur ; S. Joe Qin, Auteur . - 2012 . - pp. 9094-9100.
Industrial chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 51 N° 26 (Juillet 2012) . - pp. 9094-9100
Mots-clés : Surveillance Feedback Résumé : A simple time-delay estimation approach that requires temporarily retuning the existing PID controller is presented. Closed-loop output data are fitted with autoregressive moving average models at two different controller tunings. The time delay is determined by using the feedback-invariance principle that the closed-loop impulse response coefficients do not change inside the time-delay window. This approach requires no intervention to plant operation and does not estimate the open-loop process model but the time delay only. The estimated time delay is particularly suitable for use in control performance monitoring. ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=26107465 Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire Reconstruction-based contribution for process monitoring with kernel principal component analysis / Carlos F. Alcala in Industrial & engineering chemistry research, Vol. 49 N° 17 (Septembre 1, 2010)
![]()
[article]
Titre : Reconstruction-based contribution for process monitoring with kernel principal component analysis Type de document : texte imprimé Auteurs : Carlos F. Alcala, Auteur ; S. Joe Qin, Auteur Année de publication : 2010 Article en page(s) : pp 7849–7857 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Process monitoring Component analysis. Résumé : This paper presents a new method for fault diagnosis based on kernel principal component analysis (KPCA). The proposed method uses reconstruction-based contributions (RBC) to diagnose simple and complex faults in nonlinear principal component models based on KPCA. Similar to linear PCA, a combined index, based on the weighted combination of the Hotelling’s T2 and SPE indices, is proposed. Control limits for these fault detection indices are proposed using second-order moment approximation. The proposed fault detection and diagnosis scheme is tested with a simulated CSTR process where simple and complex faults are introduced. The simulation results show that the proposed fault detection and diagnosis methods are effective for KPCA. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie9018947
in Industrial & engineering chemistry research > Vol. 49 N° 17 (Septembre 1, 2010) . - pp 7849–7857[article] Reconstruction-based contribution for process monitoring with kernel principal component analysis [texte imprimé] / Carlos F. Alcala, Auteur ; S. Joe Qin, Auteur . - 2010 . - pp 7849–7857.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 49 N° 17 (Septembre 1, 2010) . - pp 7849–7857
Mots-clés : Process monitoring Component analysis. Résumé : This paper presents a new method for fault diagnosis based on kernel principal component analysis (KPCA). The proposed method uses reconstruction-based contributions (RBC) to diagnose simple and complex faults in nonlinear principal component models based on KPCA. Similar to linear PCA, a combined index, based on the weighted combination of the Hotelling’s T2 and SPE indices, is proposed. Control limits for these fault detection indices are proposed using second-order moment approximation. The proposed fault detection and diagnosis scheme is tested with a simulated CSTR process where simple and complex faults are introduced. The simulation results show that the proposed fault detection and diagnosis methods are effective for KPCA. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie9018947 Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire