Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Wee Chin Wong
Documents disponibles écrits par cet auteur
Affiner la rechercheFault detection and diagnosis using hidden markov disturbance models / Wee Chin Wong in Industrial & engineering chemistry research, Vol. 49 N° 17 (Septembre 1, 2010)
[article]
in Industrial & engineering chemistry research > Vol. 49 N° 17 (Septembre 1, 2010) . - pp 7901–7908
Titre : Fault detection and diagnosis using hidden markov disturbance models Type de document : texte imprimé Auteurs : Wee Chin Wong, Auteur ; Jay H. Lee, Auteur Année de publication : 2010 Article en page(s) : pp 7901–7908 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Detection Diagnosis Markov disturbance models. Résumé : Fault detection and diagnosis is critical for maintaining the health of process systems. Common fault signals include process and disturbance parameter changes, as well as sensor and actuator malfunctions typically manifested as persistent drifts or abrupt biases. These may be characterized by the existence of latent “fault” states. This work examines the effectiveness of a hidden Markov model framework for modeling such fault regimes. The proposed methodology may be interpreted as a generalization of the commonly employed mixture-of-Gaussians approach and is demonstrated through a shell-and-tube heat exchanger problem. Furthermore, the flexibility of the method is shown in the context of detecting valve stiction, a significant problem in the process industries. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie9020655 [article] Fault detection and diagnosis using hidden markov disturbance models [texte imprimé] / Wee Chin Wong, Auteur ; Jay H. Lee, Auteur . - 2010 . - pp 7901–7908.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 49 N° 17 (Septembre 1, 2010) . - pp 7901–7908
Mots-clés : Detection Diagnosis Markov disturbance models. Résumé : Fault detection and diagnosis is critical for maintaining the health of process systems. Common fault signals include process and disturbance parameter changes, as well as sensor and actuator malfunctions typically manifested as persistent drifts or abrupt biases. These may be characterized by the existence of latent “fault” states. This work examines the effectiveness of a hidden Markov model framework for modeling such fault regimes. The proposed methodology may be interpreted as a generalization of the commonly employed mixture-of-Gaussians approach and is demonstrated through a shell-and-tube heat exchanger problem. Furthermore, the flexibility of the method is shown in the context of detecting valve stiction, a significant problem in the process industries. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie9020655