Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Kujan, Petr
Documents disponibles écrits par cet auteur
Affiner la rechercheComplete fast analytical solution of the optimal odd single-phase multilevel problem / Kujan, Petr in IEEE transactions on industrial electronics, Vol. 57 N° 7 (Juillet 2010)
[article]
in IEEE transactions on industrial electronics > Vol. 57 N° 7 (Juillet 2010) . - pp. 2382 - 2397
Titre : Complete fast analytical solution of the optimal odd single-phase multilevel problem Type de document : texte imprimé Auteurs : Kujan, Petr, Auteur ; Hromsik, Martin, Auteur ; Sebek, Michael, Auteur Article en page(s) : pp. 2382 - 2397 Note générale : Génie électrique Langues : Anglais (eng) Mots-clés : Composite sum of powers Formal orthogonal polynominals (FOPs) Multilevel (ML) inverters Newton's identities Optimal pulsewidth modulation (PWM) Proble Padé approximation Polynominal methods Selected harmonics elimination Index. décimale : 621.38 Dispositifs électroniques. Tubes à électrons. Photocellules. Accélérateurs de particules. Tubes à rayons X Résumé : In this paper, we focus on the computation of optimal switching angles for general multilevel (ML) odd symmetry waveforms. We show that this problem is similar to (but more general than) the optimal pulsewidth modulation (PWM) problem, which is an established method of generating PWM waveforms with low baseband distortion. We introduce a new general modulation strategy for ML inverters, which takes an analytic form and is very fast, with a complexity of only O(n log2 n) arithmetic operations, where n is the number of controlled harmonics. This algorithm is based on a transformation of appropriate trigonometric equations for each controlled harmonics to a polynomial system of equations that is further transformed to a special system of composite sum of powers. The solution of this system is carried out by a modification of the Newton's identity via Padé approximation, formal orthogonal polynomials (FOPs) theory, and properties of symmetric polynomials. Finally, the optimal switching sequence is obtained by computing zeros of two FOP polynomials in one variable or, alternatively, by a special recurrence formula and eigenvalues computation. DEWEY : 621.38 ISSN : 0278-0046 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5290139 [article] Complete fast analytical solution of the optimal odd single-phase multilevel problem [texte imprimé] / Kujan, Petr, Auteur ; Hromsik, Martin, Auteur ; Sebek, Michael, Auteur . - pp. 2382 - 2397.
Génie électrique
Langues : Anglais (eng)
in IEEE transactions on industrial electronics > Vol. 57 N° 7 (Juillet 2010) . - pp. 2382 - 2397
Mots-clés : Composite sum of powers Formal orthogonal polynominals (FOPs) Multilevel (ML) inverters Newton's identities Optimal pulsewidth modulation (PWM) Proble Padé approximation Polynominal methods Selected harmonics elimination Index. décimale : 621.38 Dispositifs électroniques. Tubes à électrons. Photocellules. Accélérateurs de particules. Tubes à rayons X Résumé : In this paper, we focus on the computation of optimal switching angles for general multilevel (ML) odd symmetry waveforms. We show that this problem is similar to (but more general than) the optimal pulsewidth modulation (PWM) problem, which is an established method of generating PWM waveforms with low baseband distortion. We introduce a new general modulation strategy for ML inverters, which takes an analytic form and is very fast, with a complexity of only O(n log2 n) arithmetic operations, where n is the number of controlled harmonics. This algorithm is based on a transformation of appropriate trigonometric equations for each controlled harmonics to a polynomial system of equations that is further transformed to a special system of composite sum of powers. The solution of this system is carried out by a modification of the Newton's identity via Padé approximation, formal orthogonal polynomials (FOPs) theory, and properties of symmetric polynomials. Finally, the optimal switching sequence is obtained by computing zeros of two FOP polynomials in one variable or, alternatively, by a special recurrence formula and eigenvalues computation. DEWEY : 621.38 ISSN : 0278-0046 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5290139