Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur T. S. Dhanasekaran
Documents disponibles écrits par cet auteur
Affiner la rechercheCalibration of a computational model to predict mist/steam impinging jets cooling with an application to gas turbine blades / Ting Wang in Journal of heat transfer, Vol. 132 N° 12 (Décembre 2010)
[article]
in Journal of heat transfer > Vol. 132 N° 12 (Décembre 2010) . - pp. [122201-1/11]
Titre : Calibration of a computational model to predict mist/steam impinging jets cooling with an application to gas turbine blades Type de document : texte imprimé Auteurs : Ting Wang, Auteur ; T. S. Dhanasekaran, Auteur Année de publication : 2010 Article en page(s) : pp. [122201-1/11] Note générale : Physique Langues : Anglais (eng) Mots-clés : Impinging jets Mist cooling Heat transfer enhancement Two-phase flow Gas turbine blade cooling Index. décimale : 536 Chaleur. Thermodynamique Résumé : In heavy-frame advanced turbine systems, steam is used as a coolant for turbine blade cooling. The concept of injecting mist into the impinging jets of steam was experimentally proved as an effective way of significantly enhancing the cooling effectiveness in the laboratory under low pressure and temperature conditions. However, whether or not mist/steam cooling is applicable under actual gas turbine operating conditions is still subject to further verification. Recognizing the difficulties of conducting experiments in an actual high-pressure, high-temperature working gas turbine, a simulation using a computational fluid dynamic (CFD) model calibrated with laboratory data would be an opted approach. To this end, the present study conducts a CFD model calibration against the database of two experimental cases including a slot impinging jet and three rows of staggered impinging jets. The calibrated CFD model was then used to predict the mist cooling enhancement at the elevated gas turbine working condition. Using the experimental results, the CFD model has been tuned by employing different turbulence models, computational cells, and wall y+ values. In addition, the effects of different forces (e.g., drag, thermophoretic, Brownian, and Saffman's lift force) are also studied. None of the models is a good predictor for all the flow regions from near the stagnation region to far-field downstream of the jets. Overall speaking, both standard k-epsilon and Reynolds stress model (RSM) turbulence models perform better than other models. The RSM model has produced the closest results to the experimental data due to its capability of modeling the nonisotropic turbulence shear stresses in the 3D impinging jet fields. The simulated results show that the calibrated CFD model can predict the heat transfer coefficient of steam-only case within 2–5% deviations from the experimental results for all the cases. When mist is employed, the prediction of wall temperatures is within 5% for a slot jet and within 10% for three-row jets. The predicted results with 1.5% mist at the gas turbine working condition show the mist cooling enhancement of 20%, whereas in the laboratory condition, the enhancement is predicted as 80%. Increasing mist ratio to 5% increased the cooling enhancement to about 100% at the gas turbine working condition.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=JHTRAO&ONLINE=YES&smode= [...] [article] Calibration of a computational model to predict mist/steam impinging jets cooling with an application to gas turbine blades [texte imprimé] / Ting Wang, Auteur ; T. S. Dhanasekaran, Auteur . - 2010 . - pp. [122201-1/11].
Physique
Langues : Anglais (eng)
in Journal of heat transfer > Vol. 132 N° 12 (Décembre 2010) . - pp. [122201-1/11]
Mots-clés : Impinging jets Mist cooling Heat transfer enhancement Two-phase flow Gas turbine blade cooling Index. décimale : 536 Chaleur. Thermodynamique Résumé : In heavy-frame advanced turbine systems, steam is used as a coolant for turbine blade cooling. The concept of injecting mist into the impinging jets of steam was experimentally proved as an effective way of significantly enhancing the cooling effectiveness in the laboratory under low pressure and temperature conditions. However, whether or not mist/steam cooling is applicable under actual gas turbine operating conditions is still subject to further verification. Recognizing the difficulties of conducting experiments in an actual high-pressure, high-temperature working gas turbine, a simulation using a computational fluid dynamic (CFD) model calibrated with laboratory data would be an opted approach. To this end, the present study conducts a CFD model calibration against the database of two experimental cases including a slot impinging jet and three rows of staggered impinging jets. The calibrated CFD model was then used to predict the mist cooling enhancement at the elevated gas turbine working condition. Using the experimental results, the CFD model has been tuned by employing different turbulence models, computational cells, and wall y+ values. In addition, the effects of different forces (e.g., drag, thermophoretic, Brownian, and Saffman's lift force) are also studied. None of the models is a good predictor for all the flow regions from near the stagnation region to far-field downstream of the jets. Overall speaking, both standard k-epsilon and Reynolds stress model (RSM) turbulence models perform better than other models. The RSM model has produced the closest results to the experimental data due to its capability of modeling the nonisotropic turbulence shear stresses in the 3D impinging jet fields. The simulated results show that the calibrated CFD model can predict the heat transfer coefficient of steam-only case within 2–5% deviations from the experimental results for all the cases. When mist is employed, the prediction of wall temperatures is within 5% for a slot jet and within 10% for three-row jets. The predicted results with 1.5% mist at the gas turbine working condition show the mist cooling enhancement of 20%, whereas in the laboratory condition, the enhancement is predicted as 80%. Increasing mist ratio to 5% increased the cooling enhancement to about 100% at the gas turbine working condition.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=JHTRAO&ONLINE=YES&smode= [...] Simulation of mist film cooling on rotating gas turbine blades / T. S. Dhanasekaran in Journal of heat transfer, Vol. 134 N° 1 (Janvier 2012)
[article]
in Journal of heat transfer > Vol. 134 N° 1 (Janvier 2012) . - 11 p.
Titre : Simulation of mist film cooling on rotating gas turbine blades Type de document : texte imprimé Auteurs : T. S. Dhanasekaran, Auteur ; Ting Wang, Auteur Année de publication : 2012 Article en page(s) : 11 p. Note générale : Heat transfer Langues : Anglais (eng) Mots-clés : Blades Computational fluid dynamics Convection Cooling Drops Flow simulation Flue gases Gas turbines Jets Liquid films Rotational flow Thin films Two-phase flow Index. décimale : 536 Chaleur. Thermodynamique Résumé : Film cooling techniques have been successfully applied to gas turbine blades to protect them from the hot flue gas. However, a continuous demand of increasing the turbine inlet temperature to raise the efficiency of the turbine requires continuous improvement in film cooling effectiveness. The concept of injecting mist (tiny water droplets) into the cooling fluid has been proven under laboratory conditions to significantly augment adiabatic cooling effectiveness by up to 50%–800% in convective heat transfer and impingement cooling. The similar concept of injecting mist into air film cooling has not been proven in the laboratory, but computational simulations have been performed on stationary turbine blades. As a continuation of previous research, this paper extends the mist film cooling scheme to the rotating turbine blade. For the convenience of understanding the effect of rotation, the simulation is first conducted with a single pair of cooling holes located near the leading edge at either side of the blade. Then, a row of multiple-hole film cooling jets is put in place under both stationary and rotating conditions. Both the laboratory (baseline) and elevated gas turbine conditions are simulated and compared. Elevated conditions refer to a high temperature and pressure closer to actual gas turbine working conditions. The effects of various parameters including mist concentration, water droplet diameter, droplet wall boundary condition, blowing ratio, and rotational speed are investigated. The results showed that the effect of rotation on droplets under laboratory conditions is minimal. The computational fluid dynamics (CFD) model employed is the discrete phase model (DPM) including both wall film and droplet reflect conditions. The results showed that the droplet-wall interaction is stronger on the pressure side than on the suction side, resulting in a higher mist cooling enhancement on the pressure side. The average rates of mist cooling enhancement of about 15% and 35% were achieved under laboratory and elevated conditions, respectively. This translates to a significant blade surface temperature reduction of 100–125 K with 10% mist injection at elevated conditions. DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO000134000001 [...] [article] Simulation of mist film cooling on rotating gas turbine blades [texte imprimé] / T. S. Dhanasekaran, Auteur ; Ting Wang, Auteur . - 2012 . - 11 p.
Heat transfer
Langues : Anglais (eng)
in Journal of heat transfer > Vol. 134 N° 1 (Janvier 2012) . - 11 p.
Mots-clés : Blades Computational fluid dynamics Convection Cooling Drops Flow simulation Flue gases Gas turbines Jets Liquid films Rotational flow Thin films Two-phase flow Index. décimale : 536 Chaleur. Thermodynamique Résumé : Film cooling techniques have been successfully applied to gas turbine blades to protect them from the hot flue gas. However, a continuous demand of increasing the turbine inlet temperature to raise the efficiency of the turbine requires continuous improvement in film cooling effectiveness. The concept of injecting mist (tiny water droplets) into the cooling fluid has been proven under laboratory conditions to significantly augment adiabatic cooling effectiveness by up to 50%–800% in convective heat transfer and impingement cooling. The similar concept of injecting mist into air film cooling has not been proven in the laboratory, but computational simulations have been performed on stationary turbine blades. As a continuation of previous research, this paper extends the mist film cooling scheme to the rotating turbine blade. For the convenience of understanding the effect of rotation, the simulation is first conducted with a single pair of cooling holes located near the leading edge at either side of the blade. Then, a row of multiple-hole film cooling jets is put in place under both stationary and rotating conditions. Both the laboratory (baseline) and elevated gas turbine conditions are simulated and compared. Elevated conditions refer to a high temperature and pressure closer to actual gas turbine working conditions. The effects of various parameters including mist concentration, water droplet diameter, droplet wall boundary condition, blowing ratio, and rotational speed are investigated. The results showed that the effect of rotation on droplets under laboratory conditions is minimal. The computational fluid dynamics (CFD) model employed is the discrete phase model (DPM) including both wall film and droplet reflect conditions. The results showed that the droplet-wall interaction is stronger on the pressure side than on the suction side, resulting in a higher mist cooling enhancement on the pressure side. The average rates of mist cooling enhancement of about 15% and 35% were achieved under laboratory and elevated conditions, respectively. This translates to a significant blade surface temperature reduction of 100–125 K with 10% mist injection at elevated conditions. DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO000134000001 [...]