Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur A. S. Fung
Documents disponibles écrits par cet auteur
Affiner la recherchePrediction of local heat transfer in a vertical cavity using artificial neutral networks / M. Ebrahim Poulad in Journal of heat transfer, Vol. 132 N° 12 (Décembre 2010)
[article]
in Journal of heat transfer > Vol. 132 N° 12 (Décembre 2010) . - pp. [122501-1/9]
Titre : Prediction of local heat transfer in a vertical cavity using artificial neutral networks Type de document : texte imprimé Auteurs : M. Ebrahim Poulad, Auteur ; D. Naylor, Auteur ; A. S. Fung, Auteur Année de publication : 2010 Article en page(s) : pp. [122501-1/9] Note générale : Physique Langues : Anglais (eng) Mots-clés : Local heat transfer Artifical neural network Mach-Zehnder interferometry Free convection Index. décimale : 536 Chaleur. Thermodynamique Résumé : A time-averaging technique was developed to measure the unsteady and turbulent free convection heat transfer in a tall vertical enclosure using a Mach–Zehnder interferometer. The method used a combination of a digital high speed camera and an interferometer to obtain the local time-averaged heat flux in the cavity. The measured values were used to train an artificial neural network (ANN) algorithm to predict the local heat transfer. The time-averaged local Nusselt number is needed to study local phenomena, e.g., condensation in windows. Optical heat transfer measurements were made in a differentially heated vertical cavity with isothermal walls. The cavity widths were W=12.7 mm, 32.3 mm, 40 mm, and 56.2 mm. The corresponding Rayleigh numbers were about 3×103, 5×104, 1×105, and 2.7×105, respectively, and the enclosure aspect ratio (H/W) ranged from A=18 to 76. The test fluid was air and the temperature differential was about 15 K for all measurements. ALYUDA NEUROINTELLIGENCE (version 2.2) was used to generate solutions for the time-averaged local Nusselt number in the cavity based on the experimental data. Feed-forward architecture and training by the Levenberg–Marquardt algorithm were adopted. The ANN was designed to suit the present system, which had 4–13 inputs and one output. The network predictions were found to be in a good agreement with the experimental local Nusselt number values.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=JHTRAO&ONLINE=YES&smode= [...] [article] Prediction of local heat transfer in a vertical cavity using artificial neutral networks [texte imprimé] / M. Ebrahim Poulad, Auteur ; D. Naylor, Auteur ; A. S. Fung, Auteur . - 2010 . - pp. [122501-1/9].
Physique
Langues : Anglais (eng)
in Journal of heat transfer > Vol. 132 N° 12 (Décembre 2010) . - pp. [122501-1/9]
Mots-clés : Local heat transfer Artifical neural network Mach-Zehnder interferometry Free convection Index. décimale : 536 Chaleur. Thermodynamique Résumé : A time-averaging technique was developed to measure the unsteady and turbulent free convection heat transfer in a tall vertical enclosure using a Mach–Zehnder interferometer. The method used a combination of a digital high speed camera and an interferometer to obtain the local time-averaged heat flux in the cavity. The measured values were used to train an artificial neural network (ANN) algorithm to predict the local heat transfer. The time-averaged local Nusselt number is needed to study local phenomena, e.g., condensation in windows. Optical heat transfer measurements were made in a differentially heated vertical cavity with isothermal walls. The cavity widths were W=12.7 mm, 32.3 mm, 40 mm, and 56.2 mm. The corresponding Rayleigh numbers were about 3×103, 5×104, 1×105, and 2.7×105, respectively, and the enclosure aspect ratio (H/W) ranged from A=18 to 76. The test fluid was air and the temperature differential was about 15 K for all measurements. ALYUDA NEUROINTELLIGENCE (version 2.2) was used to generate solutions for the time-averaged local Nusselt number in the cavity based on the experimental data. Feed-forward architecture and training by the Levenberg–Marquardt algorithm were adopted. The ANN was designed to suit the present system, which had 4–13 inputs and one output. The network predictions were found to be in a good agreement with the experimental local Nusselt number values.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=JHTRAO&ONLINE=YES&smode= [...]