[article] in Techniques de l'ingénieur COR > Vol. COR1 (Trimestriel) . - 20 p. Titre : | Corrosion et traitements de surface des biomatériaux | Type de document : | texte imprimé | Auteurs : | Richard, Caroline, Auteur | Année de publication : | 2007 | Article en page(s) : | 20 p. | Note générale : | Bibliogr. | Langues : | Français (fre) | Mots-clés : | Corrosion Traitements Surface Biomatériaux | Index. décimale : | 62 Ingénierie. Art de l'ingénieur. Technologie en général | Résumé : | Réparer l'homme » avec des (bio)matériaux afin de retrouver l'intégrité et les fonctionnalités de son corps après une maladie ou un traumatisme, voire une amputation, a toujours été une quête inhérente (et incessante) à l'être humain. On peut trouver de nombreux témoignages et traces de différentes thérapies ou solutions utilisées par le passé, et ce dans toutes les grandes civilisations. Par exemple, les Chinois et parallèlement les Aztèques utilisaient déjà l'or en dentisterie [MAULI AGRAWAL (C.) - Reconstructing the human body using biomaterials.] . Dans l'Égypte ancienne, des mises à jour récentes ont permis de découvrir des prothèses de gros orteil en bois et en cuir, imitant à la perfection le doigt de pied manquant ainsi que des pieds entiers artificiels et des mains articulées [CORNET (A.), MEYER (J.-M.) - Corrosion des biomatériaux.] [RICHARD (C.) - Corrosion et anticorrosion dans le domaine biomédical – Cas des prothèses articulaires et dentaires.] . L'Histoire est donc parsemée de tels cas. Beaucoup remontent à plusieurs millénaires. Ainsi dans le Rig Veda, un livre sacré ancien de l'Inde (compilé de 3500 à 1800 avant J.C.), il est mentionné [MAULI AGRAWAL (C.) - Reconstructing the human body using biomaterials.] que la reine Vishpla a perdu une jambe par amputation suite à une blessure de guerre. Après guérison de sa blessure, elle reçut une prothèse en acier lui permettant de remarcher et de repartir sur les champs de bataille. Métaux et bois étaient donc déjà souvent employés mais également des pierres pour remplacer les yeux (remplacement esthétique) et même la nacre pour réparer des dents (trace d'une réparation dentaire de ce type, sur un crâne maya du Honduras [BOBBIO (A.) - The first endosseous alloplastic implant in the history of man.] , il y a 2 000 ans). Cependant, d'autres matériaux ont été envisagés. Le Sage chirurgien Susruta (environ 800 avant J.C.), équivalent indien d'Hippocrate, souligne dans son traité l'utilisation d'instruments chirurgicaux et matériaux avec détails et précision. Il a ainsi décrit des sutures réalisées avec des fibres de coton, cuir, tendons d'animaux, crins de chevaux et diverses fibres végétales. En France, des travaux équivalents sont reportés par Ambroise Paré au XVIe siècle (ligature des artères). En 1775, deux chirurgiens toulousains (Lapeyode et Sicre) emploient des sutures en fer pour réduire la fracture d'un humérus. Cependant en cette fin du XVIIIe/début du XIXe siècle où l'anesthésie, les principes d'antisepsie et les antibiotiques sont complètement inexistants, cela est couronné de peu succès pour des raisons évidentes. Néanmoins, on découvre que la plupart des métaux connus disponibles ne sont pas stables dans le temps et ont tendance à se corroder.
Ce n'est qu'il y a une quarantaine d'années seulement que la science des biomatériaux est devenue une science à part entière qui va de l'élaboration de nouveaux matériaux utilisables en pratique clinique jusqu'à l'évaluation de leur comportement global dans un corps humain à plus ou moins long terme. L'autre raison du développement croissant et accéléré des biomatériaux, est que la durée de vie des populations augmente dans les pays industrialisés (cf. figure A de [Doc. COR 140] [GUILLEMOT (F.), DURRIEU (M.-C.), BAQUEY (Ch.) - Méthode de biofonctionnalité des alliages de titane.] ) mais la qualité de nos tissus diminue avec l'âge, de manière plus ou moins drastique selon le mode de vie, l'hérédité. Le recours aux prothèses est de plus en plus courant en attendant les progrès de l'ingénierie tissulaire ou celui sur les thérapies par cellules souches. Implanter une prothèse est donc une chose commune de nos jours (plus de 120 000 prothèses ostéo-articulaires posées par an ; marché de 1,5 milliards d'euros par an ; 3,2 millions de personnes ont un biomatériau implanté rien qu'en France), mais il est essentiel qu'elle soit supportée par le patient et qu'elle ne soit pas altérée dans le temps. Pour donner un ordre de grandeur, les plus longues durées fonctionnelles d'un implant orthopédique sont, à l'heure actuelle, de seulement 15 à 20 ans ; ce qui représente une butée technologique pour les personnes jeunes qui ont pu être accidentées ou subissent une maladie chronique osseuse, par exemple.
Un large panorama des différents aspects de la corrosion et traitements de surface des biomatériaux est ici développé. Rappelons que, quel que soit le domaine d'application, la corrosion n'est pas une propriété intrinsèque d'un matériau mais celle d'un système : matériau/surface/milieu.
Cela est d'autant plus délicat à étudier puisque, dans le cas des biomatériaux, il s'agit d'interactions avec le vivant.
| REFERENCE : | COR 140 | DEWEY : | 620 | Date : | Décembre 2010 | En ligne : | www.techniques-ingenieur.fr |
[article] Corrosion et traitements de surface des biomatériaux [texte imprimé] / Richard, Caroline, Auteur . - 2007 . - 20 p. Bibliogr. Langues : Français ( fre) in Techniques de l'ingénieur COR > Vol. COR1 (Trimestriel) . - 20 p. Mots-clés : | Corrosion Traitements Surface Biomatériaux | Index. décimale : | 62 Ingénierie. Art de l'ingénieur. Technologie en général | Résumé : | Réparer l'homme » avec des (bio)matériaux afin de retrouver l'intégrité et les fonctionnalités de son corps après une maladie ou un traumatisme, voire une amputation, a toujours été une quête inhérente (et incessante) à l'être humain. On peut trouver de nombreux témoignages et traces de différentes thérapies ou solutions utilisées par le passé, et ce dans toutes les grandes civilisations. Par exemple, les Chinois et parallèlement les Aztèques utilisaient déjà l'or en dentisterie [MAULI AGRAWAL (C.) - Reconstructing the human body using biomaterials.] . Dans l'Égypte ancienne, des mises à jour récentes ont permis de découvrir des prothèses de gros orteil en bois et en cuir, imitant à la perfection le doigt de pied manquant ainsi que des pieds entiers artificiels et des mains articulées [CORNET (A.), MEYER (J.-M.) - Corrosion des biomatériaux.] [RICHARD (C.) - Corrosion et anticorrosion dans le domaine biomédical – Cas des prothèses articulaires et dentaires.] . L'Histoire est donc parsemée de tels cas. Beaucoup remontent à plusieurs millénaires. Ainsi dans le Rig Veda, un livre sacré ancien de l'Inde (compilé de 3500 à 1800 avant J.C.), il est mentionné [MAULI AGRAWAL (C.) - Reconstructing the human body using biomaterials.] que la reine Vishpla a perdu une jambe par amputation suite à une blessure de guerre. Après guérison de sa blessure, elle reçut une prothèse en acier lui permettant de remarcher et de repartir sur les champs de bataille. Métaux et bois étaient donc déjà souvent employés mais également des pierres pour remplacer les yeux (remplacement esthétique) et même la nacre pour réparer des dents (trace d'une réparation dentaire de ce type, sur un crâne maya du Honduras [BOBBIO (A.) - The first endosseous alloplastic implant in the history of man.] , il y a 2 000 ans). Cependant, d'autres matériaux ont été envisagés. Le Sage chirurgien Susruta (environ 800 avant J.C.), équivalent indien d'Hippocrate, souligne dans son traité l'utilisation d'instruments chirurgicaux et matériaux avec détails et précision. Il a ainsi décrit des sutures réalisées avec des fibres de coton, cuir, tendons d'animaux, crins de chevaux et diverses fibres végétales. En France, des travaux équivalents sont reportés par Ambroise Paré au XVIe siècle (ligature des artères). En 1775, deux chirurgiens toulousains (Lapeyode et Sicre) emploient des sutures en fer pour réduire la fracture d'un humérus. Cependant en cette fin du XVIIIe/début du XIXe siècle où l'anesthésie, les principes d'antisepsie et les antibiotiques sont complètement inexistants, cela est couronné de peu succès pour des raisons évidentes. Néanmoins, on découvre que la plupart des métaux connus disponibles ne sont pas stables dans le temps et ont tendance à se corroder.
Ce n'est qu'il y a une quarantaine d'années seulement que la science des biomatériaux est devenue une science à part entière qui va de l'élaboration de nouveaux matériaux utilisables en pratique clinique jusqu'à l'évaluation de leur comportement global dans un corps humain à plus ou moins long terme. L'autre raison du développement croissant et accéléré des biomatériaux, est que la durée de vie des populations augmente dans les pays industrialisés (cf. figure A de [Doc. COR 140] [GUILLEMOT (F.), DURRIEU (M.-C.), BAQUEY (Ch.) - Méthode de biofonctionnalité des alliages de titane.] ) mais la qualité de nos tissus diminue avec l'âge, de manière plus ou moins drastique selon le mode de vie, l'hérédité. Le recours aux prothèses est de plus en plus courant en attendant les progrès de l'ingénierie tissulaire ou celui sur les thérapies par cellules souches. Implanter une prothèse est donc une chose commune de nos jours (plus de 120 000 prothèses ostéo-articulaires posées par an ; marché de 1,5 milliards d'euros par an ; 3,2 millions de personnes ont un biomatériau implanté rien qu'en France), mais il est essentiel qu'elle soit supportée par le patient et qu'elle ne soit pas altérée dans le temps. Pour donner un ordre de grandeur, les plus longues durées fonctionnelles d'un implant orthopédique sont, à l'heure actuelle, de seulement 15 à 20 ans ; ce qui représente une butée technologique pour les personnes jeunes qui ont pu être accidentées ou subissent une maladie chronique osseuse, par exemple.
Un large panorama des différents aspects de la corrosion et traitements de surface des biomatériaux est ici développé. Rappelons que, quel que soit le domaine d'application, la corrosion n'est pas une propriété intrinsèque d'un matériau mais celle d'un système : matériau/surface/milieu.
Cela est d'autant plus délicat à étudier puisque, dans le cas des biomatériaux, il s'agit d'interactions avec le vivant.
| REFERENCE : | COR 140 | DEWEY : | 620 | Date : | Décembre 2010 | En ligne : | www.techniques-ingenieur.fr |
|