Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur M. L. Pantoya
Documents disponibles écrits par cet auteur
Affiner la rechercheEnhanced convective heat transfer in nongas generating nanoparticle thermites / S. W. Dean in Journal of heat transfer, Vol. 132 N° 11 (Novembre 2010)
[article]
in Journal of heat transfer > Vol. 132 N° 11 (Novembre 2010) . - pp.[111201-1/7]
Titre : Enhanced convective heat transfer in nongas generating nanoparticle thermites Type de document : texte imprimé Auteurs : S. W. Dean, Auteur ; M. L. Pantoya, Auteur ; A. E. Gash, Auteur Année de publication : 2010 Article en page(s) : pp.[111201-1/7] Note générale : Physique Langues : Anglais (eng) Mots-clés : Nanocomposites Enhanced convection reaction mechanisms Nano-alumium Thermites CuO NiO Peak pressures Flame speeds Flame speeds DSC TGA XRD Gas generation Flame propagation Index. décimale : 536 Chaleur. Thermodynamique Résumé : Flame propagation and peak pressure measurements were taken of two nanoscaled thermites using aluminum (Al) fuel and copper oxide (CuO) or nickel oxide (NiO) oxidizers in a confined flame tube apparatus. Thermal equilibrium simulations predict that the Al+CuO reaction exhibits high gas generation and, thus, high convective flame propagation rates while the Al+NiO reaction produces little to no gas and, therefore, should exhibit much lower flame propagation rates. Results show flame propagation rates ranged between 200 m/s and 600 m/s and peak pressures ranged between 1.7 MPa and 3.7 MPa for both composites. These results were significantly higher than expected for the Al+NiO, which generates virtually no gas. For nanometric Al particles, oxidation has recently been described by a melt-dispersion oxidation mechanism that involves a dispersion of high velocity alumina shell fragments and molten Al droplets that promote a pressure build-up by inducing a bulk movement of fluid. This mechanism unique to nanoparticle reaction may promote convection without the need for additional gas generation.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=JHTRAO&ONLINE=YES&smode= [...] [article] Enhanced convective heat transfer in nongas generating nanoparticle thermites [texte imprimé] / S. W. Dean, Auteur ; M. L. Pantoya, Auteur ; A. E. Gash, Auteur . - 2010 . - pp.[111201-1/7].
Physique
Langues : Anglais (eng)
in Journal of heat transfer > Vol. 132 N° 11 (Novembre 2010) . - pp.[111201-1/7]
Mots-clés : Nanocomposites Enhanced convection reaction mechanisms Nano-alumium Thermites CuO NiO Peak pressures Flame speeds Flame speeds DSC TGA XRD Gas generation Flame propagation Index. décimale : 536 Chaleur. Thermodynamique Résumé : Flame propagation and peak pressure measurements were taken of two nanoscaled thermites using aluminum (Al) fuel and copper oxide (CuO) or nickel oxide (NiO) oxidizers in a confined flame tube apparatus. Thermal equilibrium simulations predict that the Al+CuO reaction exhibits high gas generation and, thus, high convective flame propagation rates while the Al+NiO reaction produces little to no gas and, therefore, should exhibit much lower flame propagation rates. Results show flame propagation rates ranged between 200 m/s and 600 m/s and peak pressures ranged between 1.7 MPa and 3.7 MPa for both composites. These results were significantly higher than expected for the Al+NiO, which generates virtually no gas. For nanometric Al particles, oxidation has recently been described by a melt-dispersion oxidation mechanism that involves a dispersion of high velocity alumina shell fragments and molten Al droplets that promote a pressure build-up by inducing a bulk movement of fluid. This mechanism unique to nanoparticle reaction may promote convection without the need for additional gas generation.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=JHTRAO&ONLINE=YES&smode= [...]