Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Won, Seong-Hoon .Peter
Documents disponibles écrits par cet auteur
Affiner la rechercheA Kalman/particle filter-based position and orientation estimation method using a position sensor/inertial measurement unit hybrid system / Won, Seong-Hoon .Peter in IEEE transactions on industrial electronics, Vol. 57 N° 5 (Mai 2010)
[article]
in IEEE transactions on industrial electronics > Vol. 57 N° 5 (Mai 2010) . - pp. 1787 - 1798
Titre : A Kalman/particle filter-based position and orientation estimation method using a position sensor/inertial measurement unit hybrid system Type de document : texte imprimé Auteurs : Won, Seong-Hoon .Peter, Auteur ; Melek, Wael William, Auteur ; Golnaraghi, Farid, Auteur Année de publication : 2011 Article en page(s) : pp. 1787 - 1798 Note générale : Génie électrique Langues : Anglais (eng) Mots-clés : Accelerometer Expert system Gyro Inertial measurement unit (IMU) Kalman filter (KF) Orientation Particle filter (PF) Position Index. décimale : 621.38 Dispositifs électroniques. Tubes à électrons. Photocellules. Accélérateurs de particules. Tubes à rayons X Résumé : This paper presents a novel methodology that estimates position and orientation using one position sensor and one inertial measurement unit. The proposed method estimates orientation using a particle filter and estimates position and velocity using a Kalman filter (KF). In addition, an expert system is used to correct the angular velocity measurement errors. The experimental results show that the orientation errors using the proposed method are significantly reduced compared to the orientation errors obtained from an extended Kalman filter (EKF) approach. The improved orientation estimation using the proposed method leads to better position estimation accuracy. This paper studies the effects of the number of particles of the proposed filter and position sensor noise on the orientation accuracy. Furthermore, the experimental results show that the orientation of the proposed method converges to the correct orientation even when the initial orientation is completely unknown. DEWEY : 621.38 ISSN : 0278-0046 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5256216 [article] A Kalman/particle filter-based position and orientation estimation method using a position sensor/inertial measurement unit hybrid system [texte imprimé] / Won, Seong-Hoon .Peter, Auteur ; Melek, Wael William, Auteur ; Golnaraghi, Farid, Auteur . - 2011 . - pp. 1787 - 1798.
Génie électrique
Langues : Anglais (eng)
in IEEE transactions on industrial electronics > Vol. 57 N° 5 (Mai 2010) . - pp. 1787 - 1798
Mots-clés : Accelerometer Expert system Gyro Inertial measurement unit (IMU) Kalman filter (KF) Orientation Particle filter (PF) Position Index. décimale : 621.38 Dispositifs électroniques. Tubes à électrons. Photocellules. Accélérateurs de particules. Tubes à rayons X Résumé : This paper presents a novel methodology that estimates position and orientation using one position sensor and one inertial measurement unit. The proposed method estimates orientation using a particle filter and estimates position and velocity using a Kalman filter (KF). In addition, an expert system is used to correct the angular velocity measurement errors. The experimental results show that the orientation errors using the proposed method are significantly reduced compared to the orientation errors obtained from an extended Kalman filter (EKF) approach. The improved orientation estimation using the proposed method leads to better position estimation accuracy. This paper studies the effects of the number of particles of the proposed filter and position sensor noise on the orientation accuracy. Furthermore, the experimental results show that the orientation of the proposed method converges to the correct orientation even when the initial orientation is completely unknown. DEWEY : 621.38 ISSN : 0278-0046 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5256216