Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur de Melo, Jorge Dantas
Documents disponibles écrits par cet auteur
Affiner la rechercheA neural network multiagent architecture applied to industrial networks for dynamic allocation of control strategies using standard function blocks / Machado, Vinicius in IEEE transactions on industrial electronics, Vol. 57 N° 5 (Mai 2010)
[article]
in IEEE transactions on industrial electronics > Vol. 57 N° 5 (Mai 2010) . - pp. 1823 - 1834
Titre : A neural network multiagent architecture applied to industrial networks for dynamic allocation of control strategies using standard function blocks Type de document : texte imprimé Auteurs : Machado, Vinicius, Auteur ; Neto, Adriao Duarte Doria, Auteur ; de Melo, Jorge Dantas, Auteur Année de publication : 2011 Article en page(s) : pp. 1823 - 1834 Note générale : Génie électrique Langues : Anglais (eng) Mots-clés : Automation Fieldbus fundation LabVIEW Multiagent systems (MASs) Index. décimale : 621.38 Dispositifs électroniques. Tubes à électrons. Photocellules. Accélérateurs de particules. Tubes à rayons X Résumé : This paper presents a multiagent architecture applied to factory automation. These agents detect faults in automated processes and allocate intelligent algorithms in field device function blocks (FBs) to solve these faults. We also present a dynamic FB parameter exchange strategy that allows agent fieldbus allocation. This architecture is a foundation for intelligent physical agents standard-based agent platform developed using Foundation Fieldbus technology. The aim is to enable problem detection activities, independent of user intervention. The use of artificial neural network (ANN)-based algorithms enables the agents to learn about fault patterns and adapt an algorithm that can be used in fault situations. Thus, we intend to reduce supervisor intervention in selecting and implementing an appropriate structure for FB algorithms. Furthermore, these algorithms, when implemented in device FBs, provide a solution at the fieldbus level, reducing data traffic between gateway and device, and speeding up the process of problem resolution. We also show some examples of our approach. The first is a neural network architecture change that allocates different types of neural networks in field devices without interrupting the fieldbus network operation. The second shows a multiagent architecture that implements the neural network change in a laboratory test process, where fault scenarios have been simulated. DEWEY : 621.38 ISSN : 0278-0046 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5229259 [article] A neural network multiagent architecture applied to industrial networks for dynamic allocation of control strategies using standard function blocks [texte imprimé] / Machado, Vinicius, Auteur ; Neto, Adriao Duarte Doria, Auteur ; de Melo, Jorge Dantas, Auteur . - 2011 . - pp. 1823 - 1834.
Génie électrique
Langues : Anglais (eng)
in IEEE transactions on industrial electronics > Vol. 57 N° 5 (Mai 2010) . - pp. 1823 - 1834
Mots-clés : Automation Fieldbus fundation LabVIEW Multiagent systems (MASs) Index. décimale : 621.38 Dispositifs électroniques. Tubes à électrons. Photocellules. Accélérateurs de particules. Tubes à rayons X Résumé : This paper presents a multiagent architecture applied to factory automation. These agents detect faults in automated processes and allocate intelligent algorithms in field device function blocks (FBs) to solve these faults. We also present a dynamic FB parameter exchange strategy that allows agent fieldbus allocation. This architecture is a foundation for intelligent physical agents standard-based agent platform developed using Foundation Fieldbus technology. The aim is to enable problem detection activities, independent of user intervention. The use of artificial neural network (ANN)-based algorithms enables the agents to learn about fault patterns and adapt an algorithm that can be used in fault situations. Thus, we intend to reduce supervisor intervention in selecting and implementing an appropriate structure for FB algorithms. Furthermore, these algorithms, when implemented in device FBs, provide a solution at the fieldbus level, reducing data traffic between gateway and device, and speeding up the process of problem resolution. We also show some examples of our approach. The first is a neural network architecture change that allocates different types of neural networks in field devices without interrupting the fieldbus network operation. The second shows a multiagent architecture that implements the neural network change in a laboratory test process, where fault scenarios have been simulated. DEWEY : 621.38 ISSN : 0278-0046 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5229259