Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Dimos Poulikakos
Documents disponibles écrits par cet auteur
Affiner la rechercheLarge convective heat transfer enhancement in microchannels with a train of coflowing immiscible or colloidal droplets / Magnus Fischer in Journal of heat transfer, Vol. 132 N° 11 (Novembre 2010)
[article]
in Journal of heat transfer > Vol. 132 N° 11 (Novembre 2010) . - pp. [112402-1/10]
Titre : Large convective heat transfer enhancement in microchannels with a train of coflowing immiscible or colloidal droplets Type de document : texte imprimé Auteurs : Magnus Fischer, Auteur ; Damir Juric, Auteur ; Dimos Poulikakos, Auteur Année de publication : 2010 Article en page(s) : pp. [112402-1/10] Note générale : Physique Langues : Anglais (eng) Mots-clés : Nanofluid Colloidal suspensions Thermal transport Marangoni effect Droplet-laden flow Segmented flow Immiscible fluids Index. décimale : 536 Chaleur. Thermodynamique Résumé : We show that heat transfer in microchannels can be considerably augmented by introducing droplets or slugs of an immiscible liquid into the main fluid flow. We numerically investigate the influence of differently shaped colloidal or simply pure immiscible droplets to the main liquid flow on the thermal transport in microchannels. Results of parametric studies on the influence of all major factors connected to microchannel heat transfer are presented. The effect of induced Marangoni flow at the liquid interfaces is also taken into account and quantified. The calculation of the multiphase, multispecies flow problem is performed, applying a front tracking method, extended to account for nanoparticle transport in the suspended phase when relevant. This study reveals that the use of a second suspended liquid (with or without nanoparticles) is an efficient way to significantly increase the thermal performance without unacceptably large pressure losses. In the case of slug-train coflow, the Nusselt number can be increased by as much as 400% compared with single liquid flow.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=JHTRAO&ONLINE=YES&smode= [...] [article] Large convective heat transfer enhancement in microchannels with a train of coflowing immiscible or colloidal droplets [texte imprimé] / Magnus Fischer, Auteur ; Damir Juric, Auteur ; Dimos Poulikakos, Auteur . - 2010 . - pp. [112402-1/10].
Physique
Langues : Anglais (eng)
in Journal of heat transfer > Vol. 132 N° 11 (Novembre 2010) . - pp. [112402-1/10]
Mots-clés : Nanofluid Colloidal suspensions Thermal transport Marangoni effect Droplet-laden flow Segmented flow Immiscible fluids Index. décimale : 536 Chaleur. Thermodynamique Résumé : We show that heat transfer in microchannels can be considerably augmented by introducing droplets or slugs of an immiscible liquid into the main fluid flow. We numerically investigate the influence of differently shaped colloidal or simply pure immiscible droplets to the main liquid flow on the thermal transport in microchannels. Results of parametric studies on the influence of all major factors connected to microchannel heat transfer are presented. The effect of induced Marangoni flow at the liquid interfaces is also taken into account and quantified. The calculation of the multiphase, multispecies flow problem is performed, applying a front tracking method, extended to account for nanoparticle transport in the suspended phase when relevant. This study reveals that the use of a second suspended liquid (with or without nanoparticles) is an efficient way to significantly increase the thermal performance without unacceptably large pressure losses. In the case of slug-train coflow, the Nusselt number can be increased by as much as 400% compared with single liquid flow.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=JHTRAO&ONLINE=YES&smode= [...]