Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Kee-Won Seong
Documents disponibles écrits par cet auteur
Affiner la rechercheTorsional stiffness of prestressing tendons in double-T beams / Yong-Hak Lee in Journal of engineering mechanics, Vol. 137 N° 1 (Janvier 2011)
[article]
in Journal of engineering mechanics > Vol. 137 N° 1 (Janvier 2011) . - pp.61-72
Titre : Torsional stiffness of prestressing tendons in double-T beams Type de document : texte imprimé Auteurs : Yong-Hak Lee, Auteur ; Won-Jin Sung, Auteur ; Kee-Won Seong, Auteur Année de publication : 2011 Article en page(s) : pp.61-72 Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Beams Prestressing Warpage Rotation Finite element method Stiffness. Résumé : When a prestressed double-T beam is subjected to torsion, a pair of prestressing tendons resists torsional rotation because of the restoring action of the displaced prestressing tendons. A comprehensive formulation to account for the torsional restoring action of double-T beams is presented, based on Vlasov’s hypothesis of considering warping displacement in an open-section. The deformation energies of prestressing tendons and reinforcing bars are calculated based on the deformed geometry to obtain the total potential energy. A two-noded beam element with seven degrees of freedom per node approximates an axial displacement, two translations, two flexural, and one torsional rotations, and a warping displacement to derive the finite-element equilibrium equations by minimizing the potential energy function. The role of prestressing forces of the tendons on the torsional resistance and the limitations of the traditional transformed section approach are addressed when it is applied to torsional problems. As a numerical example, an existing three-span continuous double-T beam is analyzed, and the bimoment and angle of twist are compared to those calculated using conventional three-dimensional finite-element analysis and the analytical solution of governing differential equations. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.org/emo/resource/1/jenmdt/v137/i1/p61_s1?isAuthorized=no [article] Torsional stiffness of prestressing tendons in double-T beams [texte imprimé] / Yong-Hak Lee, Auteur ; Won-Jin Sung, Auteur ; Kee-Won Seong, Auteur . - 2011 . - pp.61-72.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 137 N° 1 (Janvier 2011) . - pp.61-72
Mots-clés : Beams Prestressing Warpage Rotation Finite element method Stiffness. Résumé : When a prestressed double-T beam is subjected to torsion, a pair of prestressing tendons resists torsional rotation because of the restoring action of the displaced prestressing tendons. A comprehensive formulation to account for the torsional restoring action of double-T beams is presented, based on Vlasov’s hypothesis of considering warping displacement in an open-section. The deformation energies of prestressing tendons and reinforcing bars are calculated based on the deformed geometry to obtain the total potential energy. A two-noded beam element with seven degrees of freedom per node approximates an axial displacement, two translations, two flexural, and one torsional rotations, and a warping displacement to derive the finite-element equilibrium equations by minimizing the potential energy function. The role of prestressing forces of the tendons on the torsional resistance and the limitations of the traditional transformed section approach are addressed when it is applied to torsional problems. As a numerical example, an existing three-span continuous double-T beam is analyzed, and the bimoment and angle of twist are compared to those calculated using conventional three-dimensional finite-element analysis and the analytical solution of governing differential equations. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.org/emo/resource/1/jenmdt/v137/i1/p61_s1?isAuthorized=no