Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur T. J. Bright
Documents disponibles écrits par cet auteur
Affiner la rechercheEntropy generation in thin films evaluated from phonon radiative transport / T. J. Bright in Journal of heat transfer, Vol. 132 N° 10 (Octobre 2010)
[article]
in Journal of heat transfer > Vol. 132 N° 10 (Octobre 2010) . - pp. [101301-1/9]
Titre : Entropy generation in thin films evaluated from phonon radiative transport Type de document : texte imprimé Auteurs : T. J. Bright, Auteur ; Z. M. Zhang, Auteur Année de publication : 2010 Article en page(s) : pp. [101301-1/9] Note générale : Physique Langues : Anglais (eng) Mots-clés : Conduction Entropy Phonon radiative transfer Thermodynamics Thin film Index. décimale : 536 Chaleur. Thermodynamique Résumé : One of the approaches for micro/nanoscale heat transfer in semiconductors and dielectric materials is to use the Boltzmann transport equation, which reduces to the equation of phonon radiative transfer under the relaxation time approximation. Transfer and generation of entropy are processes inherently associated with thermal energy transport, yet little has been done to analyze entropy generation in solids at length scales comparable with or smaller than the mean free path of heat carriers. This work extends the concept of radiation entropy in a participating medium to phonon radiation, thus, providing a method to evaluate entropy generation at both large and small length scales. The conventional formula for entropy generation in heat diffusion can be derived under the local equilibrium assumption. Furthermore, the phonon brightness temperature is introduced to describe the nature of nonequilibrium heat conduction. A diamond film is used as a numerical example to illustrate the distribution of entropy generation at the walls and inside the film at low temperatures. A fundamental knowledge of the entropy generation processes provides a thermodynamic understanding of heat transport in solid microstructures; this is particularly important for the performance evaluation of thermal systems and microdevices.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=JHTRAO&ONLINE=YES&smode= [...] [article] Entropy generation in thin films evaluated from phonon radiative transport [texte imprimé] / T. J. Bright, Auteur ; Z. M. Zhang, Auteur . - 2010 . - pp. [101301-1/9].
Physique
Langues : Anglais (eng)
in Journal of heat transfer > Vol. 132 N° 10 (Octobre 2010) . - pp. [101301-1/9]
Mots-clés : Conduction Entropy Phonon radiative transfer Thermodynamics Thin film Index. décimale : 536 Chaleur. Thermodynamique Résumé : One of the approaches for micro/nanoscale heat transfer in semiconductors and dielectric materials is to use the Boltzmann transport equation, which reduces to the equation of phonon radiative transfer under the relaxation time approximation. Transfer and generation of entropy are processes inherently associated with thermal energy transport, yet little has been done to analyze entropy generation in solids at length scales comparable with or smaller than the mean free path of heat carriers. This work extends the concept of radiation entropy in a participating medium to phonon radiation, thus, providing a method to evaluate entropy generation at both large and small length scales. The conventional formula for entropy generation in heat diffusion can be derived under the local equilibrium assumption. Furthermore, the phonon brightness temperature is introduced to describe the nature of nonequilibrium heat conduction. A diamond film is used as a numerical example to illustrate the distribution of entropy generation at the walls and inside the film at low temperatures. A fundamental knowledge of the entropy generation processes provides a thermodynamic understanding of heat transport in solid microstructures; this is particularly important for the performance evaluation of thermal systems and microdevices.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=JHTRAO&ONLINE=YES&smode= [...]