Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur H. A. F. A. Santos
Documents disponibles écrits par cet auteur
Affiner la rechercheEquilibrium-based finite-element formulation for the geometrically exact analysis of planar framed structures / H. A. F. A. Santos in Journal of engineering mechanics, Vol. 136 N° 12 (Décembre 2010)
[article]
in Journal of engineering mechanics > Vol. 136 N° 12 (Décembre 2010) . - pp.1474-1490
Titre : Equilibrium-based finite-element formulation for the geometrically exact analysis of planar framed structures Type de document : texte imprimé Auteurs : H. A. F. A. Santos, Auteur ; J. P. Moitinho de Almeida, Auteur Année de publication : 2011 Article en page(s) : pp.1474-1490 Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Beams Frames Hybrid methods Finite element method Geometry. Résumé : This paper addresses the development of a hybrid-mixed finite-element formulation for the geometrically exact quasi-static analysis of elastic planar framed structures, modeled using the two-dimensional Reissner beam theory. The proposed formulation relies on a modified principle of complementary energy, which involves, as independent variables, the generalized vectors of stress resultants and displacements and, in addition, a set of Lagrange multipliers used to enforce the stress continuity between elements. The adopted finite-element discretization produces numerical solutions that strongly satisfy the equilibrium differential equations in the elements, as well as the static boundary conditions. It consists, therefore, in a true equilibrium formulation for arbitrarily large displacements and rotations. Furthermore, as it does not suffer from shear locking or any other artificial stiffening phenomena, it may be regarded as an alternative to the standard displacement-based formulation. To validate and assess the accuracy of the proposed formulation, some benchmark problems are analyzed and their solutions are compared with those obtained using the standard two-node displacement-based formulation. Numerical analyses of convergence of the proposed finite-element formulation are also included. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.org/emo/resource/1/jenmdt/v136/i12/p1474_s1?isAuthorized=no [article] Equilibrium-based finite-element formulation for the geometrically exact analysis of planar framed structures [texte imprimé] / H. A. F. A. Santos, Auteur ; J. P. Moitinho de Almeida, Auteur . - 2011 . - pp.1474-1490.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 136 N° 12 (Décembre 2010) . - pp.1474-1490
Mots-clés : Beams Frames Hybrid methods Finite element method Geometry. Résumé : This paper addresses the development of a hybrid-mixed finite-element formulation for the geometrically exact quasi-static analysis of elastic planar framed structures, modeled using the two-dimensional Reissner beam theory. The proposed formulation relies on a modified principle of complementary energy, which involves, as independent variables, the generalized vectors of stress resultants and displacements and, in addition, a set of Lagrange multipliers used to enforce the stress continuity between elements. The adopted finite-element discretization produces numerical solutions that strongly satisfy the equilibrium differential equations in the elements, as well as the static boundary conditions. It consists, therefore, in a true equilibrium formulation for arbitrarily large displacements and rotations. Furthermore, as it does not suffer from shear locking or any other artificial stiffening phenomena, it may be regarded as an alternative to the standard displacement-based formulation. To validate and assess the accuracy of the proposed formulation, some benchmark problems are analyzed and their solutions are compared with those obtained using the standard two-node displacement-based formulation. Numerical analyses of convergence of the proposed finite-element formulation are also included. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.org/emo/resource/1/jenmdt/v136/i12/p1474_s1?isAuthorized=no