Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Shutong Yang
Documents disponibles écrits par cet auteur
Affiner la rechercheAnalytical method for pullout of anchor from anchor–mortar–concrete anchorage system due tmortaro shear failure of / Zhimin Wu in Journal of engineering mechanics, Vol. 133 N°11 (Novembre 2007)
[article]
in Journal of engineering mechanics > Vol. 133 N°11 (Novembre 2007) . - pp.1358-1369
Titre : Analytical method for pullout of anchor from anchor–mortar–concrete anchorage system due tmortaro shear failure of Type de document : texte imprimé Auteurs : Zhimin Wu, Auteur ; Shutong Yang, Auteur ; Hu, Xiaozhi, Auteur Année de publication : 2007 Article en page(s) : pp.1358-1369 Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Shear failure Cracking Pull-out resistance Bonding Mortars Résumé : Depending on the relevant material properties, failure of grouted anchors can take forms of pullout of concrete cones, debonding at either anchor–grout or grout–concrete interface, fracture of anchor and combination of some of these failure modes. Further, if the thickness of the grout layer is thin enough, the shear strength of the grout is relatively low or the anchor is in the form of a steel bar with ribs or spirals, the grout would be sheared off so that the anchor is pulled out. The present study presents an analytical method for the last scenario, i.e., anchor pullout from an anchor–mortar–concrete anchorage due to shear failure of mortar. Two different boundary conditions are considered: fixed bottom surface of concrete as Boundary 1, and top surface of concrete with uniform distributed force as Boundary 2. A shear-lag model was introduced to analyze the behaviors of the mortar and the interfacial properties of both the anchor–mortar and the mortar–concrete interfaces were also considered. Based on the deformation compatibilities of the interfaces and the mortar layer, the distributions of the tensile stresses in the anchor and shear stresses in the mortar along the embedment length were obtained analytically during different loading stages for both Boundaries 1 and 2. Moreover, the probabilities and sequences of shear cracks induced by the mortar failure were determined according to the boundary conditions and the comparison between the shear stresses at the loading and nonloading ends. Double shear crack propagation from both ends with different crack lengths was then investigated. Besides, the pullout load was expressed as a function of the shear crack lengths. Then the maximum load and the corresponding critical crack lengths were obtained by using the theories of extremum. Finally, a series of material, structural, and interfacial parameters were adopted to study their influences on the calculated results using the proposed method, including the critical crack lengths, initial cracking load and maximum pullout load. It was found that the initial cracking and maximum loads in Boundary 1 are larger than those in Boundary 2. However, as the longitudinal rigidity of the concrete increases, the values of the maximum pullout loads in both of the boundary conditions approach each other. It was also found that there exists an effective bonding length, beyond which the critical crack length and maximum pullout load are no longer increased. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%282007%29133%3A12%281 [...] [article] Analytical method for pullout of anchor from anchor–mortar–concrete anchorage system due tmortaro shear failure of [texte imprimé] / Zhimin Wu, Auteur ; Shutong Yang, Auteur ; Hu, Xiaozhi, Auteur . - 2007 . - pp.1358-1369.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 133 N°11 (Novembre 2007) . - pp.1358-1369
Mots-clés : Shear failure Cracking Pull-out resistance Bonding Mortars Résumé : Depending on the relevant material properties, failure of grouted anchors can take forms of pullout of concrete cones, debonding at either anchor–grout or grout–concrete interface, fracture of anchor and combination of some of these failure modes. Further, if the thickness of the grout layer is thin enough, the shear strength of the grout is relatively low or the anchor is in the form of a steel bar with ribs or spirals, the grout would be sheared off so that the anchor is pulled out. The present study presents an analytical method for the last scenario, i.e., anchor pullout from an anchor–mortar–concrete anchorage due to shear failure of mortar. Two different boundary conditions are considered: fixed bottom surface of concrete as Boundary 1, and top surface of concrete with uniform distributed force as Boundary 2. A shear-lag model was introduced to analyze the behaviors of the mortar and the interfacial properties of both the anchor–mortar and the mortar–concrete interfaces were also considered. Based on the deformation compatibilities of the interfaces and the mortar layer, the distributions of the tensile stresses in the anchor and shear stresses in the mortar along the embedment length were obtained analytically during different loading stages for both Boundaries 1 and 2. Moreover, the probabilities and sequences of shear cracks induced by the mortar failure were determined according to the boundary conditions and the comparison between the shear stresses at the loading and nonloading ends. Double shear crack propagation from both ends with different crack lengths was then investigated. Besides, the pullout load was expressed as a function of the shear crack lengths. Then the maximum load and the corresponding critical crack lengths were obtained by using the theories of extremum. Finally, a series of material, structural, and interfacial parameters were adopted to study their influences on the calculated results using the proposed method, including the critical crack lengths, initial cracking load and maximum pullout load. It was found that the initial cracking and maximum loads in Boundary 1 are larger than those in Boundary 2. However, as the longitudinal rigidity of the concrete increases, the values of the maximum pullout loads in both of the boundary conditions approach each other. It was also found that there exists an effective bonding length, beyond which the critical crack length and maximum pullout load are no longer increased. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%282007%29133%3A12%281 [...] Analytical method for pullout of anchor from anchor–mortar–concrete anchorage system due to shear failure of mortar / Zhimin Wu in Journal of engineering mechanics, Vol. 133 N°12 (Decembre 2007)
[article]
in Journal of engineering mechanics > Vol. 133 N°12 (Decembre 2007) . - pp.1352–1369.
Titre : Analytical method for pullout of anchor from anchor–mortar–concrete anchorage system due to shear failure of mortar Type de document : texte imprimé Auteurs : Zhimin Wu, Auteur ; Shutong Yang, Auteur ; Hu, Xiaozhi, Auteur Année de publication : 2007 Article en page(s) : pp.1352–1369. Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Shear failure Cracking Pull-out resistance Bonding Mortars Résumé : Depending on the relevant material properties, failure of grouted anchors can take forms of pullout of concrete cones, debonding at either anchor–grout or grout–concrete interface, fracture of anchor and combination of some of these failure modes. Further, if the thickness of the grout layer is thin enough, the shear strength of the grout is relatively low or the anchor is in the form of a steel bar with ribs or spirals, the grout would be sheared off so that the anchor is pulled out. The present study presents an analytical method for the last scenario, i.e., anchor pullout from an anchor–mortar–concrete anchorage due to shear failure of mortar. Two different boundary conditions are considered: fixed bottom surface of concrete as Boundary 1, and top surface of concrete with uniform distributed force as Boundary 2. A shear-lag model was introduced to analyze the behaviors of the mortar and the interfacial properties of both the anchor–mortar and the mortar–concrete interfaces were also considered. Based on the deformation compatibilities of the interfaces and the mortar layer, the distributions of the tensile stresses in the anchor and shear stresses in the mortar along the embedment length were obtained analytically during different loading stages for both Boundaries 1 and 2. Moreover, the probabilities and sequences of shear cracks induced by the mortar failure were determined according to the boundary conditions and the comparison between the shear stresses at the loading and nonloading ends. Double shear crack propagation from both ends with different crack lengths was then investigated. Besides, the pullout load was expressed as a function of the shear crack lengths. Then the maximum load and the corresponding critical crack lengths were obtained by using the theories of extremum. Finally, a series of material, structural, and interfacial parameters were adopted to study their influences on the calculated results using the proposed method, including the critical crack lengths, initial cracking load and maximum pullout load. It was found that the initial cracking and maximum loads in Boundary 1 are larger than those in Boundary 2. However, as the longitudinal rigidity of the concrete increases, the values of the maximum pullout loads in both of the boundary conditions approach each other. It was also found that there exists an effective bonding length, beyond which the critical crack length and maximum pullout load are no longer increased. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%282007%29133%3A12%281 [...] [article] Analytical method for pullout of anchor from anchor–mortar–concrete anchorage system due to shear failure of mortar [texte imprimé] / Zhimin Wu, Auteur ; Shutong Yang, Auteur ; Hu, Xiaozhi, Auteur . - 2007 . - pp.1352–1369.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 133 N°12 (Decembre 2007) . - pp.1352–1369.
Mots-clés : Shear failure Cracking Pull-out resistance Bonding Mortars Résumé : Depending on the relevant material properties, failure of grouted anchors can take forms of pullout of concrete cones, debonding at either anchor–grout or grout–concrete interface, fracture of anchor and combination of some of these failure modes. Further, if the thickness of the grout layer is thin enough, the shear strength of the grout is relatively low or the anchor is in the form of a steel bar with ribs or spirals, the grout would be sheared off so that the anchor is pulled out. The present study presents an analytical method for the last scenario, i.e., anchor pullout from an anchor–mortar–concrete anchorage due to shear failure of mortar. Two different boundary conditions are considered: fixed bottom surface of concrete as Boundary 1, and top surface of concrete with uniform distributed force as Boundary 2. A shear-lag model was introduced to analyze the behaviors of the mortar and the interfacial properties of both the anchor–mortar and the mortar–concrete interfaces were also considered. Based on the deformation compatibilities of the interfaces and the mortar layer, the distributions of the tensile stresses in the anchor and shear stresses in the mortar along the embedment length were obtained analytically during different loading stages for both Boundaries 1 and 2. Moreover, the probabilities and sequences of shear cracks induced by the mortar failure were determined according to the boundary conditions and the comparison between the shear stresses at the loading and nonloading ends. Double shear crack propagation from both ends with different crack lengths was then investigated. Besides, the pullout load was expressed as a function of the shear crack lengths. Then the maximum load and the corresponding critical crack lengths were obtained by using the theories of extremum. Finally, a series of material, structural, and interfacial parameters were adopted to study their influences on the calculated results using the proposed method, including the critical crack lengths, initial cracking load and maximum pullout load. It was found that the initial cracking and maximum loads in Boundary 1 are larger than those in Boundary 2. However, as the longitudinal rigidity of the concrete increases, the values of the maximum pullout loads in both of the boundary conditions approach each other. It was also found that there exists an effective bonding length, beyond which the critical crack length and maximum pullout load are no longer increased. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%282007%29133%3A12%281 [...] Analytical solution for fracture analysis of CFRP Sheet–strengthened cracked concrete beams / Zhimin Wu in Journal of engineering mechanics, Vol. 136 N° 10 (Octobre 2010)
[article]
in Journal of engineering mechanics > Vol. 136 N° 10 (Octobre 2010) . - pp.1202-1219
Titre : Analytical solution for fracture analysis of CFRP Sheet–strengthened cracked concrete beams Type de document : texte imprimé Auteurs : Zhimin Wu, Auteur ; Shutong Yang, Auteur ; Xiaozhi Hu, Auteur Année de publication : 2010 Article en page(s) : pp.1202-1219 Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Concrete beams Fiber reinforced polymer Cracking. Résumé : Fiber-reinforced polymer (FRP) composite materials have been widely used in the field of retrofitting. Theoretical analysis of FRP plate- or sheet-strengthened cracked concrete beams is necessary for estimating service reliability of the structural members. In previous studies, the effect of a perfectly bonded FRP plate or sheet was equivalent to a cohesive force acting at the bottom of crack to delay the crack propagation in concrete and reduce the crack width. However, delamination between FRP and cracked beam is inevitable due to interfacial shear stress concentration at the bottom of crack. The intention of this paper is to present an analytical solution for fracture analysis of carbon FRP (CFRP) sheet–strengthened cracked concrete beams by considering both vertical crack propagation in concrete and interfacial debonding at CFRP-concrete interface. The interfacial debonding is modeled as the interfacial shear crack propagation in this paper. Four different stages are discussed after initial cracking state of the concrete. At the first stage, only fictitious crack propagation occurs in the concrete. At the second stage, macrocrack propagates in the concrete without interfacial debonding. At the third stage, both vertical macrocrack propagation in the concrete and horizontal shear crack propagation at the CFRP-concrete interface occur in the strengthened beam. The tensile stress in the CFRP sheet and interfacial shear stress along the span are formulated based on the deformation compatibility condition at the CFRP-concrete interface at this stage. Finally, macroshear crack propagates at the interface until the CFRP sheet is completely peeled out from the beam, and then the member is fractured. The applied load is determined as a function of the referred two crack lengths at different stages. At the beginning, the applied load increases to one peak value with the full propagation of fictitious crack at the first stage. At the third stage, the applied load is improved to another peak value due to the relatively high cohesive effect of the CFRP sheet. Then the two peak values are determined by the Lagrange multiplier method. The validity of the proposed analytical solution is verified with the experimental results and numerical simulations. It can be concluded that the proposed analytical solution can predict the load-bearing capacity of CFRP sheet-strengthened cracked concrete beams with reasonable accuracy. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.org/emo/resource/1/jenmdt/v136/i10/p1202_s1?isAuthorized=no [article] Analytical solution for fracture analysis of CFRP Sheet–strengthened cracked concrete beams [texte imprimé] / Zhimin Wu, Auteur ; Shutong Yang, Auteur ; Xiaozhi Hu, Auteur . - 2010 . - pp.1202-1219.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 136 N° 10 (Octobre 2010) . - pp.1202-1219
Mots-clés : Concrete beams Fiber reinforced polymer Cracking. Résumé : Fiber-reinforced polymer (FRP) composite materials have been widely used in the field of retrofitting. Theoretical analysis of FRP plate- or sheet-strengthened cracked concrete beams is necessary for estimating service reliability of the structural members. In previous studies, the effect of a perfectly bonded FRP plate or sheet was equivalent to a cohesive force acting at the bottom of crack to delay the crack propagation in concrete and reduce the crack width. However, delamination between FRP and cracked beam is inevitable due to interfacial shear stress concentration at the bottom of crack. The intention of this paper is to present an analytical solution for fracture analysis of carbon FRP (CFRP) sheet–strengthened cracked concrete beams by considering both vertical crack propagation in concrete and interfacial debonding at CFRP-concrete interface. The interfacial debonding is modeled as the interfacial shear crack propagation in this paper. Four different stages are discussed after initial cracking state of the concrete. At the first stage, only fictitious crack propagation occurs in the concrete. At the second stage, macrocrack propagates in the concrete without interfacial debonding. At the third stage, both vertical macrocrack propagation in the concrete and horizontal shear crack propagation at the CFRP-concrete interface occur in the strengthened beam. The tensile stress in the CFRP sheet and interfacial shear stress along the span are formulated based on the deformation compatibility condition at the CFRP-concrete interface at this stage. Finally, macroshear crack propagates at the interface until the CFRP sheet is completely peeled out from the beam, and then the member is fractured. The applied load is determined as a function of the referred two crack lengths at different stages. At the beginning, the applied load increases to one peak value with the full propagation of fictitious crack at the first stage. At the third stage, the applied load is improved to another peak value due to the relatively high cohesive effect of the CFRP sheet. Then the two peak values are determined by the Lagrange multiplier method. The validity of the proposed analytical solution is verified with the experimental results and numerical simulations. It can be concluded that the proposed analytical solution can predict the load-bearing capacity of CFRP sheet-strengthened cracked concrete beams with reasonable accuracy. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.org/emo/resource/1/jenmdt/v136/i10/p1202_s1?isAuthorized=no