Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Morgan, Ian
Documents disponibles écrits par cet auteur
Affiner la rechercheDetection and diagnosis of incipient faults in heavy-duty diesel engines / Morgan, Ian in IEEE transactions on industrial electronics, Vol. 57 N° 10 (Octobre 2010)
[article]
in IEEE transactions on industrial electronics > Vol. 57 N° 10 (Octobre 2010) . - pp. 3522 - 3532
Titre : Detection and diagnosis of incipient faults in heavy-duty diesel engines Type de document : texte imprimé Auteurs : Morgan, Ian, Auteur ; Honghai, Liu, Auteur ; Tormos, Bernardo, Auteur Année de publication : 2011 Article en page(s) : pp. 3522 - 3532 Note générale : Génie électrique Langues : Anglais (eng) Mots-clés : Bayesian network Diagnisis Diesel engines Fault detection Gaussian Incipient faults One-class classification Spectrometry Index. décimale : 621.38 Dispositifs électroniques. Tubes à électrons. Photocellules. Accélérateurs de particules. Tubes à rayons X Résumé : This paper proposes a new methodology for detecting and diagnosing faults found in heavy-duty diesel engines based upon spectrometric analysis of lubrication samples and is compared against a conventional method, the redline limits, which is utilized in a number of major laboratories in the U.K. and across Europe. The proposed method applies computational power to a well-known maintenance technique and consists of an improved method of preprocessing to form a derivative tuple, which extracts further information from the measured elemental concentrations. To identify incipient faults, the distance in vector space is calculated using a Gaussian contour, generated from prior data, as the zero crossing, which enables novel samples to be classified as normal or abnormal. This information is utilized as the input to a probabilistic directed acyclic graph in the form of a belief network. This network provides a prognosis for the mechanism as well as suggesting possible actions that could be taken to rectify the diagnosed problem, supported with confidence probabilities. The proposed method is evaluated for both accuracy in detecting a fault as well as the duration of time that is provided before the event occurs, with significant improvements in both metrics demonstrated over the conventional method. DEWEY : 621.38 ISSN : 0278-0046 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5371850 [article] Detection and diagnosis of incipient faults in heavy-duty diesel engines [texte imprimé] / Morgan, Ian, Auteur ; Honghai, Liu, Auteur ; Tormos, Bernardo, Auteur . - 2011 . - pp. 3522 - 3532.
Génie électrique
Langues : Anglais (eng)
in IEEE transactions on industrial electronics > Vol. 57 N° 10 (Octobre 2010) . - pp. 3522 - 3532
Mots-clés : Bayesian network Diagnisis Diesel engines Fault detection Gaussian Incipient faults One-class classification Spectrometry Index. décimale : 621.38 Dispositifs électroniques. Tubes à électrons. Photocellules. Accélérateurs de particules. Tubes à rayons X Résumé : This paper proposes a new methodology for detecting and diagnosing faults found in heavy-duty diesel engines based upon spectrometric analysis of lubrication samples and is compared against a conventional method, the redline limits, which is utilized in a number of major laboratories in the U.K. and across Europe. The proposed method applies computational power to a well-known maintenance technique and consists of an improved method of preprocessing to form a derivative tuple, which extracts further information from the measured elemental concentrations. To identify incipient faults, the distance in vector space is calculated using a Gaussian contour, generated from prior data, as the zero crossing, which enables novel samples to be classified as normal or abnormal. This information is utilized as the input to a probabilistic directed acyclic graph in the form of a belief network. This network provides a prognosis for the mechanism as well as suggesting possible actions that could be taken to rectify the diagnosed problem, supported with confidence probabilities. The proposed method is evaluated for both accuracy in detecting a fault as well as the duration of time that is provided before the event occurs, with significant improvements in both metrics demonstrated over the conventional method. DEWEY : 621.38 ISSN : 0278-0046 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5371850