[article]
Titre : |
Classification of energy consumption in buildings with outlier detection |
Type de document : |
texte imprimé |
Auteurs : |
Xiaoli Li, Auteur ; Bowers, Chris P., Auteur ; Schnier, Thorsten, Auteur |
Année de publication : |
2011 |
Article en page(s) : |
pp. 3639 - 3644 |
Note générale : |
Génie électrique |
Langues : |
Anglais (eng) |
Mots-clés : |
Canonical variate analysis (CVA) Electricity data Energy management Modeling Outlier detection Prediction |
Index. décimale : |
621.38 Dispositifs électroniques. Tubes à électrons. Photocellules. Accélérateurs de particules. Tubes à rayons X |
Résumé : |
In this paper, we propose an intelligent data-analysis method for modeling and prediction of daily electricity consumption in buildings. The objective is to enable a building-management system to be used for forecasting and detection of abnormal energy use. First, an outlier-detection method is proposed to identify abnormally high or low energy use in a building. Then a canonical variate analysis is employed to describe latent variables of daily electricity-consumption profiles, which can be used to group the data sets into different clusters. Finally, a simple classifier is used to predict the daily electricity-consumption profiles. A case study, based on a mixed-use environment, was studied. The results demonstrate that the method proposed in this paper can be used in conjunction with a building-management system to identify abnormal utility consumption and notify building operators in real time. |
DEWEY : |
621.38 |
ISSN : |
0278-0046 |
En ligne : |
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5175339 |
in IEEE transactions on industrial electronics > Vol. 57 N° 11 (Novembre 2010) . - pp. 3639 - 3644
[article] Classification of energy consumption in buildings with outlier detection [texte imprimé] / Xiaoli Li, Auteur ; Bowers, Chris P., Auteur ; Schnier, Thorsten, Auteur . - 2011 . - pp. 3639 - 3644. Génie électrique Langues : Anglais ( eng) in IEEE transactions on industrial electronics > Vol. 57 N° 11 (Novembre 2010) . - pp. 3639 - 3644
Mots-clés : |
Canonical variate analysis (CVA) Electricity data Energy management Modeling Outlier detection Prediction |
Index. décimale : |
621.38 Dispositifs électroniques. Tubes à électrons. Photocellules. Accélérateurs de particules. Tubes à rayons X |
Résumé : |
In this paper, we propose an intelligent data-analysis method for modeling and prediction of daily electricity consumption in buildings. The objective is to enable a building-management system to be used for forecasting and detection of abnormal energy use. First, an outlier-detection method is proposed to identify abnormally high or low energy use in a building. Then a canonical variate analysis is employed to describe latent variables of daily electricity-consumption profiles, which can be used to group the data sets into different clusters. Finally, a simple classifier is used to predict the daily electricity-consumption profiles. A case study, based on a mixed-use environment, was studied. The results demonstrate that the method proposed in this paper can be used in conjunction with a building-management system to identify abnormal utility consumption and notify building operators in real time. |
DEWEY : |
621.38 |
ISSN : |
0278-0046 |
En ligne : |
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5175339 |
|