Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Binglu Ruan
Documents disponibles écrits par cet auteur
Affiner la rechercheInvestigation on intertube falling-film Heat transfer and mode transitions of aqueous-alumina nanofluids / Binglu Ruan in Journal of heat transfer, Vol. 133 N° 5 (Mai 2011)
[article]
in Journal of heat transfer > Vol. 133 N° 5 (Mai 2011) . - pp. [051501/1-11]
Titre : Investigation on intertube falling-film Heat transfer and mode transitions of aqueous-alumina nanofluids Type de document : texte imprimé Auteurs : Binglu Ruan, Auteur ; Anthony M. Jacobi, Auteur Année de publication : 2011 Article en page(s) : pp. [051501/1-11] Note générale : Physique Langues : Anglais (eng) Mots-clés : Falling-film Heat transfer Nanofluids Lode transition Thermal conductivity Viscosity Surface tension Index. décimale : 536 Chaleur. Thermodynamique Résumé : Horizontal-tube falling-film heat transfer characteristics of aqueous aluminum oxide nanofluids at concentrations of 0 vol %, 0.05 vol % (0.20 wt %), 0.5 vol % (1.96 wt %), 1 vol % (3.86 wt %) (with and without sodium dodecylbenzene sulfonate), and 2 vol % (7.51 wt %) are investigated and compared with predictions developed for conventional fluids. The thermophysical properties of the nanofluids, including thermal conductivity, kinematic viscosity, and surface tension, are reported, as is the mode transition behavior of the nanofluids. The experimental results for heat transfer are in good agreement with predictions for falling-film flow and no unusual Nu enhancement was observed in the present studies. Additionally, a 20% mode transitional Reynolds number increase was recorded for transitions between sheets and jets and jet-droplet mode to droplet mode. Although the findings with water-alumina nanofluids are not encouraging with respect to heat transfer, the results extend nanofluid data to a new type of flow and may help improve our understanding of nanofluid behavior. Moreover, this work provides a basis for further work on falling-film nanofluids.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=JHTRAO&smode=strresults& [...] [article] Investigation on intertube falling-film Heat transfer and mode transitions of aqueous-alumina nanofluids [texte imprimé] / Binglu Ruan, Auteur ; Anthony M. Jacobi, Auteur . - 2011 . - pp. [051501/1-11].
Physique
Langues : Anglais (eng)
in Journal of heat transfer > Vol. 133 N° 5 (Mai 2011) . - pp. [051501/1-11]
Mots-clés : Falling-film Heat transfer Nanofluids Lode transition Thermal conductivity Viscosity Surface tension Index. décimale : 536 Chaleur. Thermodynamique Résumé : Horizontal-tube falling-film heat transfer characteristics of aqueous aluminum oxide nanofluids at concentrations of 0 vol %, 0.05 vol % (0.20 wt %), 0.5 vol % (1.96 wt %), 1 vol % (3.86 wt %) (with and without sodium dodecylbenzene sulfonate), and 2 vol % (7.51 wt %) are investigated and compared with predictions developed for conventional fluids. The thermophysical properties of the nanofluids, including thermal conductivity, kinematic viscosity, and surface tension, are reported, as is the mode transition behavior of the nanofluids. The experimental results for heat transfer are in good agreement with predictions for falling-film flow and no unusual Nu enhancement was observed in the present studies. Additionally, a 20% mode transitional Reynolds number increase was recorded for transitions between sheets and jets and jet-droplet mode to droplet mode. Although the findings with water-alumina nanofluids are not encouraging with respect to heat transfer, the results extend nanofluid data to a new type of flow and may help improve our understanding of nanofluid behavior. Moreover, this work provides a basis for further work on falling-film nanofluids.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=JHTRAO&smode=strresults& [...]