Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Ogami, Yoshifumi
Documents disponibles écrits par cet auteur
Affiner la rechercheMixing enhancement by microrotor in step channel / Dinh, Thien X. in Transactions of the ASME . Journal of fluids engineering, Vol. 133 N° 2 (Fevrier 2011)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 133 N° 2 (Fevrier 2011) . - 06 p.
Titre : Mixing enhancement by microrotor in step channel Type de document : texte imprimé Auteurs : Dinh, Thien X., Auteur ; Ogami, Yoshifumi, Auteur Année de publication : 2011 Article en page(s) : 06 p. Note générale : Fluids engineering Langues : Anglais (eng) Mots-clés : Micromixers Mixing efficiency Microrotor Numerical simulation Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : In this paper, the mixing enhancement of a micromixer consisting of a step channel and a shuttlecock rotor suspended in the step is numerically analyzed. Asymptotic mixing performance is investigated as a function of Strouhal and Peclet numbers by particle tracking simulation and the Eulerian approach. The simulation results show that the rotor creates downward and inward flows in behind the rotor paddles, whereas the upward and outward flows are produced in front of the rotor paddles. At a small Strouhal number, convective mixing is very poor. However, the mixing direction is rotated by 90 deg, which can reduce the mixing time by the square of the aspect ratio of the cross section of the channel. In contrast, at a relatively large Strouhal number, good convective mixing occurs. Quantitative analysis of mixing performance of the mixer demonstrates that the mixing structures are similar for the same Strouhal number and mixing is improved with increasing Strouhal number. The mixing efficiency of the mixer decreases linearly with increasing log of the Peclet number at a relatively large Strouhal number. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA400013 [...] [article] Mixing enhancement by microrotor in step channel [texte imprimé] / Dinh, Thien X., Auteur ; Ogami, Yoshifumi, Auteur . - 2011 . - 06 p.
Fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 133 N° 2 (Fevrier 2011) . - 06 p.
Mots-clés : Micromixers Mixing efficiency Microrotor Numerical simulation Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : In this paper, the mixing enhancement of a micromixer consisting of a step channel and a shuttlecock rotor suspended in the step is numerically analyzed. Asymptotic mixing performance is investigated as a function of Strouhal and Peclet numbers by particle tracking simulation and the Eulerian approach. The simulation results show that the rotor creates downward and inward flows in behind the rotor paddles, whereas the upward and outward flows are produced in front of the rotor paddles. At a small Strouhal number, convective mixing is very poor. However, the mixing direction is rotated by 90 deg, which can reduce the mixing time by the square of the aspect ratio of the cross section of the channel. In contrast, at a relatively large Strouhal number, good convective mixing occurs. Quantitative analysis of mixing performance of the mixer demonstrates that the mixing structures are similar for the same Strouhal number and mixing is improved with increasing Strouhal number. The mixing efficiency of the mixer decreases linearly with increasing log of the Peclet number at a relatively large Strouhal number. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA400013 [...] A principle to generate flow for thermal convective base sensors / Dinh, Thien X. in Transactions of the ASME . Journal of fluids engineering, Vol. 131 N° 4 (Avril 2009)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 131 N° 4 (Avril 2009) . - 06 p.
Titre : A principle to generate flow for thermal convective base sensors Type de document : texte imprimé Auteurs : Dinh, Thien X., Auteur ; Ogami, Yoshifumi, Auteur Année de publication : 2009 Article en page(s) : 06 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : flow (dynamics); channels (hydraulic engineering); sensors; jets; nozzles; membranes Résumé : This paper presents a thin millimeter-scaled device that can generate a closed flow within itself with a velocity of the order of a few m/s. The device comprises a piezoelectric pump with a PZT membrane, housing chamber, and a closed network channel connected to the housing chamber through a specific throat. We investigate the device by computational fluid dynamics. This device is used to produce several free jet flows depending on the structure of the network channel. In this study, four jet flows comprising two perpendicular pairs of flows are demonstrated. If the PZT membrane vibrates within a suitable range, the self-similarity of the axial velocity (along the jet direction) to the cross distances scaled by the half-widths of the jet is observed for a certain range of axial distance. Each jet flow can bend almost freely in three dimensions. The two remaining flow components are small as compared to the axial component. The device potentially has wide applications in flow-based sensors. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...] [article] A principle to generate flow for thermal convective base sensors [texte imprimé] / Dinh, Thien X., Auteur ; Ogami, Yoshifumi, Auteur . - 2009 . - 06 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 131 N° 4 (Avril 2009) . - 06 p.
Mots-clés : flow (dynamics); channels (hydraulic engineering); sensors; jets; nozzles; membranes Résumé : This paper presents a thin millimeter-scaled device that can generate a closed flow within itself with a velocity of the order of a few m/s. The device comprises a piezoelectric pump with a PZT membrane, housing chamber, and a closed network channel connected to the housing chamber through a specific throat. We investigate the device by computational fluid dynamics. This device is used to produce several free jet flows depending on the structure of the network channel. In this study, four jet flows comprising two perpendicular pairs of flows are demonstrated. If the PZT membrane vibrates within a suitable range, the self-similarity of the axial velocity (along the jet direction) to the cross distances scaled by the half-widths of the jet is observed for a certain range of axial distance. Each jet flow can bend almost freely in three dimensions. The two remaining flow components are small as compared to the axial component. The device potentially has wide applications in flow-based sensors. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...]