Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Gilbert Y. Grondin
Documents disponibles écrits par cet auteur
Affiner la rechercheApplication of indirect capacity design principles for seismic design of steel-plate shear walls / Anjan K. Bhowmick in Journal of structural engineering, Vol. 137 N° 4 (Avril 2011)
[article]
in Journal of structural engineering > Vol. 137 N° 4 (Avril 2011) . - pp. 521-530
Titre : Application of indirect capacity design principles for seismic design of steel-plate shear walls Type de document : texte imprimé Auteurs : Anjan K. Bhowmick, Auteur ; Driver, Robert G., Auteur ; Gilbert Y. Grondin, Auteur Année de publication : 2011 Article en page(s) : pp. 521-530 Note générale : Génie Civil Langues : Anglais (eng) Mots-clés : Capacity design Ductile Plate Seismic Shear wall Steel Index. décimale : 624 Constructions du génie civil et du bâtiment. Infrastructures. Ouvrages en terres. Fondations. Tunnels. Ponts et charpentes Résumé : This paper presents a capacity design procedure that aims to achieve good seismic performance for steel-plate shear walls and improve the overall economy of the system. The proposed method uses indirect capacity design principles to identify the infill plates most likely to yield in the design earthquake. Linear models of the boundary columns are used to determine the column design forces. The proposed method is used for the design of two 4-story and one 8-story steel-plate shear walls. Design axial forces and moments in the boundary columns for the three different steel-plate shear walls are compared with nonlinear seismic analysis results, and the results of the proposed procedure are shown to be in good agreement with those of the nonlinear analyses. For comparison, the paper also evaluates other capacity design approaches that have been proposed in the literature.
DEWEY : 624.17 ISSN : 0733-9445 En ligne : http://ascelibrary.org/sto/resource/1/jsendh/v137/i4/p521_s1?isAuthorized=no [article] Application of indirect capacity design principles for seismic design of steel-plate shear walls [texte imprimé] / Anjan K. Bhowmick, Auteur ; Driver, Robert G., Auteur ; Gilbert Y. Grondin, Auteur . - 2011 . - pp. 521-530.
Génie Civil
Langues : Anglais (eng)
in Journal of structural engineering > Vol. 137 N° 4 (Avril 2011) . - pp. 521-530
Mots-clés : Capacity design Ductile Plate Seismic Shear wall Steel Index. décimale : 624 Constructions du génie civil et du bâtiment. Infrastructures. Ouvrages en terres. Fondations. Tunnels. Ponts et charpentes Résumé : This paper presents a capacity design procedure that aims to achieve good seismic performance for steel-plate shear walls and improve the overall economy of the system. The proposed method uses indirect capacity design principles to identify the infill plates most likely to yield in the design earthquake. Linear models of the boundary columns are used to determine the column design forces. The proposed method is used for the design of two 4-story and one 8-story steel-plate shear walls. Design axial forces and moments in the boundary columns for the three different steel-plate shear walls are compared with nonlinear seismic analysis results, and the results of the proposed procedure are shown to be in good agreement with those of the nonlinear analyses. For comparison, the paper also evaluates other capacity design approaches that have been proposed in the literature.
DEWEY : 624.17 ISSN : 0733-9445 En ligne : http://ascelibrary.org/sto/resource/1/jsendh/v137/i4/p521_s1?isAuthorized=no Design for block shear of coped beams with a welded end connection / Michael C. H. Yam in Journal of structural engineering, Vol. 137 N° 8 (Août 2011)
[article]
in Journal of structural engineering > Vol. 137 N° 8 (Août 2011) . - pp. 811-821
Titre : Design for block shear of coped beams with a welded end connection Type de document : texte imprimé Auteurs : Michael C. H. Yam, Auteur ; Gilbert Y. Grondin, Auteur ; Feng Wei, Auteur Année de publication : 2011 Article en page(s) : pp. 811-821 Note générale : Génie Civil Langues : Anglais (eng) Mots-clés : Block shear Coped beams Welded connections Finite-element analysis Load and resistance factor design Index. décimale : 624 Constructions du génie civil et du bâtiment. Infrastructures. Ouvrages en terres. Fondations. Tunnels. Ponts et charpentes Résumé : This paper presents a numerical study of the block shear strength and behavior of coped beams with welded end connections. The finite-element (FE) method was employed to predict the structural behavior and block shear capacity of specimens tested during a previous experimental study conducted by the writers. In general, the finite-element analysis results compared well with the test results, and the validated finite-element models were used subsequently to further investigate the structural behavior of the connections through a parametric study. The results show that the block shear capacity of coped beams with welded end connections, in general, increases with increasing connection rotational stiffness and increasing web block aspect ratio (depth/width). It was found that, for design purposes, connections with a large web block aspect ratio (large depth and narrow width) should be used to reduce the effects of loading eccentricity between the centroid of the weld group of the connection and the support. The finite-element analysis results also show that, for the coped beams with small connection rotational stiffness, shear yielding only occurs over a small portion of the shear area. Based on the test and the finite-element analysis results, a design equation previously proposed by the first writer for evaluating the block shear capacity of a coped beam with a welded clip angle connection was modified to account for the effects of the connection rotational stiffness. The predictions based on the modified design equation compare well with the test and the finite-element analysis results. The ratio of the test and the FE capacities to the predicted capacities has a mean of 1.01 and a coefficient of variation of 0.05.
DEWEY : 624.17 ISSN : 0733-9445 En ligne : http://ascelibrary.org/sto/resource/1/jsendh/v137/i8/p811_s1?isAuthorized=no [article] Design for block shear of coped beams with a welded end connection [texte imprimé] / Michael C. H. Yam, Auteur ; Gilbert Y. Grondin, Auteur ; Feng Wei, Auteur . - 2011 . - pp. 811-821.
Génie Civil
Langues : Anglais (eng)
in Journal of structural engineering > Vol. 137 N° 8 (Août 2011) . - pp. 811-821
Mots-clés : Block shear Coped beams Welded connections Finite-element analysis Load and resistance factor design Index. décimale : 624 Constructions du génie civil et du bâtiment. Infrastructures. Ouvrages en terres. Fondations. Tunnels. Ponts et charpentes Résumé : This paper presents a numerical study of the block shear strength and behavior of coped beams with welded end connections. The finite-element (FE) method was employed to predict the structural behavior and block shear capacity of specimens tested during a previous experimental study conducted by the writers. In general, the finite-element analysis results compared well with the test results, and the validated finite-element models were used subsequently to further investigate the structural behavior of the connections through a parametric study. The results show that the block shear capacity of coped beams with welded end connections, in general, increases with increasing connection rotational stiffness and increasing web block aspect ratio (depth/width). It was found that, for design purposes, connections with a large web block aspect ratio (large depth and narrow width) should be used to reduce the effects of loading eccentricity between the centroid of the weld group of the connection and the support. The finite-element analysis results also show that, for the coped beams with small connection rotational stiffness, shear yielding only occurs over a small portion of the shear area. Based on the test and the finite-element analysis results, a design equation previously proposed by the first writer for evaluating the block shear capacity of a coped beam with a welded clip angle connection was modified to account for the effects of the connection rotational stiffness. The predictions based on the modified design equation compare well with the test and the finite-element analysis results. The ratio of the test and the FE capacities to the predicted capacities has a mean of 1.01 and a coefficient of variation of 0.05.
DEWEY : 624.17 ISSN : 0733-9445 En ligne : http://ascelibrary.org/sto/resource/1/jsendh/v137/i8/p811_s1?isAuthorized=no