Détail de l'auteur
Auteur Miranda, A. K. |
Documents disponibles écrits par cet auteur (1)



Robust parameter design optimization of simulation experiments using stochastic perturbation methods / Miranda, A. K. in Journal of the operational research society (JORS), Vol. 62 N° 1 (Janvier 2011)
![]()
[article]
Titre : Robust parameter design optimization of simulation experiments using stochastic perturbation methods Type de document : texte imprimé Auteurs : Miranda, A. K., Auteur ; Del Castillo, E., Auteur Année de publication : 2011 Article en page(s) : pp. 198–205 Note générale : Recherche opérationnelle Langues : Anglais (eng) Mots-clés : Simulation optimization Noise factors Crossed arrays Non-homogeneous variance Index. décimale : 001.424 Résumé : Stochastic perturbation methods can be applied to problems for which either the objective function is represented analytically, or the objective function is the result of a simulation experiment. The Simultaneous Perturbation Stochastic Approximation (SPSA) method has the advantage over similar methods of requiring only two measurements at each iteration of the search. This feature makes SPSA attractive for robust parameter design (RPD) problems where some factors affect the variance of the response(s) of interest. In this paper, the feasibility of SPSA as a RPD optimizer is presented, first when the objective function is known, and then when the objective function is estimated by means of a discrete-event simulation. DEWEY : 001.424 ISSN : 0160-5682 En ligne : http://www.palgrave-journals.com/jors/journal/v62/n1/abs/jors2009163a.html
in Journal of the operational research society (JORS) > Vol. 62 N° 1 (Janvier 2011) . - pp. 198–205[article] Robust parameter design optimization of simulation experiments using stochastic perturbation methods [texte imprimé] / Miranda, A. K., Auteur ; Del Castillo, E., Auteur . - 2011 . - pp. 198–205.
Recherche opérationnelle
Langues : Anglais (eng)
in Journal of the operational research society (JORS) > Vol. 62 N° 1 (Janvier 2011) . - pp. 198–205
Mots-clés : Simulation optimization Noise factors Crossed arrays Non-homogeneous variance Index. décimale : 001.424 Résumé : Stochastic perturbation methods can be applied to problems for which either the objective function is represented analytically, or the objective function is the result of a simulation experiment. The Simultaneous Perturbation Stochastic Approximation (SPSA) method has the advantage over similar methods of requiring only two measurements at each iteration of the search. This feature makes SPSA attractive for robust parameter design (RPD) problems where some factors affect the variance of the response(s) of interest. In this paper, the feasibility of SPSA as a RPD optimizer is presented, first when the objective function is known, and then when the objective function is estimated by means of a discrete-event simulation. DEWEY : 001.424 ISSN : 0160-5682 En ligne : http://www.palgrave-journals.com/jors/journal/v62/n1/abs/jors2009163a.html Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire