Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Smith, A. E.
Documents disponibles écrits par cet auteur
Affiner la rechercheHybrid approach for Pareto front expansion in heuristics / Yapicioglu, H. in Journal of the operational research society (JORS), Vol. 62 N° 2 Special issue (Fevrier 2011)
[article]
in Journal of the operational research society (JORS) > Vol. 62 N° 2 Special issue (Fevrier 2011) . - pp. 348–359
Titre : Hybrid approach for Pareto front expansion in heuristics Type de document : texte imprimé Auteurs : Yapicioglu, H., Auteur ; Liu, H., Auteur ; Smith, A. E., Auteur Année de publication : 2011 Article en page(s) : pp. 348–359 Note générale : Recherche opérationnelle Langues : Anglais (eng) Mots-clés : Kriging General regression neural network Multi-objective optimization Heuristic search Hybrid methods Index. décimale : 001.424 Résumé : Heuristic search can be an effective multi-objective optimization tool; however, the required frequent function evaluations can exhaust computational sources. This paper explores using a hybrid approach with statistical interpolation methods to expand optimal solutions obtained by multiple criteria heuristic search. The goal is to significantly increase the number of Pareto optimal solutions while limiting computational effort. The interpolation approaches studied are kriging and general regression neural networks. This paper develops a hybrid methodology combining an interpolator with a heuristic, and examines performance on several non-linear bi-objective example problems. Computational experience shows this approach successfully expands and enriches the Pareto fronts of multi-objective optimization problems. DEWEY : 001.424 ISSN : 0160-5682 En ligne : http://www.palgrave-journals.com/jors/journal/v62/n2/abs/jors2010151a.html [article] Hybrid approach for Pareto front expansion in heuristics [texte imprimé] / Yapicioglu, H., Auteur ; Liu, H., Auteur ; Smith, A. E., Auteur . - 2011 . - pp. 348–359.
Recherche opérationnelle
Langues : Anglais (eng)
in Journal of the operational research society (JORS) > Vol. 62 N° 2 Special issue (Fevrier 2011) . - pp. 348–359
Mots-clés : Kriging General regression neural network Multi-objective optimization Heuristic search Hybrid methods Index. décimale : 001.424 Résumé : Heuristic search can be an effective multi-objective optimization tool; however, the required frequent function evaluations can exhaust computational sources. This paper explores using a hybrid approach with statistical interpolation methods to expand optimal solutions obtained by multiple criteria heuristic search. The goal is to significantly increase the number of Pareto optimal solutions while limiting computational effort. The interpolation approaches studied are kriging and general regression neural networks. This paper develops a hybrid methodology combining an interpolator with a heuristic, and examines performance on several non-linear bi-objective example problems. Computational experience shows this approach successfully expands and enriches the Pareto fronts of multi-objective optimization problems. DEWEY : 001.424 ISSN : 0160-5682 En ligne : http://www.palgrave-journals.com/jors/journal/v62/n2/abs/jors2010151a.html