Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Chabchoub, H.
Documents disponibles écrits par cet auteur
Affiner la rechercheGoal programming using multiple objective hybrid metaheuristic algorithm / Dhouib, S. in Journal of the operational research society (JORS), Vol. 62 N° 4 (Avril 2011)
[article]
in Journal of the operational research society (JORS) > Vol. 62 N° 4 (Avril 2011) . - pp. 677–689
Titre : Goal programming using multiple objective hybrid metaheuristic algorithm Type de document : texte imprimé Auteurs : Dhouib, S., Auteur ; Kharrat, A., Auteur ; Chabchoub, H., Auteur Année de publication : 2011 Article en page(s) : pp. 677–689 Note générale : Recherche opérationnelle Langues : Anglais (eng) Mots-clés : Goal programming Multi-objective optimization Record-to-record travel algorithm Adaptive memory Variable neighbourhood search Index. décimale : 001.424 Résumé : In this paper, a Goal Programming (GP) model is converted into a multi-objective optimization problem (MOO) of minimizing deviations from fixed goals. To solve the resulting MOO problem, a hybrid metaheuristic with two steps is proposed to find the Pareto set's solutions. First, a Record-to-Record Travel with an adaptive memory is used to find first non-dominated Pareto frontier solutions preemptively. Second, a Variable Neighbour Search technique with three transformation types is used to intensify every non dominated solution found in the first Pareto frontier to produce the final Pareto frontier solutions. The efficiency of the proposed approach is demonstrated by solving two nonlinear GP test problems and three engineering design problems. In all problems, multiple solutions to the GP problem are found in one single simulation run. The results prove that the proposed algorithm is robust, fast and simply structured, and manages to find high-quality solutions in short computational times by efficiently alternating search diversification and intensification using very few user-defined parameters. DEWEY : 001.424 ISSN : 0160-5682 En ligne : http://www.palgrave-journals.com/jors/journal/v62/n4/abs/jors2009181a.html [article] Goal programming using multiple objective hybrid metaheuristic algorithm [texte imprimé] / Dhouib, S., Auteur ; Kharrat, A., Auteur ; Chabchoub, H., Auteur . - 2011 . - pp. 677–689.
Recherche opérationnelle
Langues : Anglais (eng)
in Journal of the operational research society (JORS) > Vol. 62 N° 4 (Avril 2011) . - pp. 677–689
Mots-clés : Goal programming Multi-objective optimization Record-to-record travel algorithm Adaptive memory Variable neighbourhood search Index. décimale : 001.424 Résumé : In this paper, a Goal Programming (GP) model is converted into a multi-objective optimization problem (MOO) of minimizing deviations from fixed goals. To solve the resulting MOO problem, a hybrid metaheuristic with two steps is proposed to find the Pareto set's solutions. First, a Record-to-Record Travel with an adaptive memory is used to find first non-dominated Pareto frontier solutions preemptively. Second, a Variable Neighbour Search technique with three transformation types is used to intensify every non dominated solution found in the first Pareto frontier to produce the final Pareto frontier solutions. The efficiency of the proposed approach is demonstrated by solving two nonlinear GP test problems and three engineering design problems. In all problems, multiple solutions to the GP problem are found in one single simulation run. The results prove that the proposed algorithm is robust, fast and simply structured, and manages to find high-quality solutions in short computational times by efficiently alternating search diversification and intensification using very few user-defined parameters. DEWEY : 001.424 ISSN : 0160-5682 En ligne : http://www.palgrave-journals.com/jors/journal/v62/n4/abs/jors2009181a.html Hybrid metaheuristics for the profitable arc tour problem / J. Euchi in Journal of the operational research society (JORS), Vol. 62 N° 11 (Novembre 2011)
[article]
in Journal of the operational research society (JORS) > Vol. 62 N° 11 (Novembre 2011) . - pp. 2013–2022
Titre : Hybrid metaheuristics for the profitable arc tour problem Type de document : texte imprimé Auteurs : J. Euchi, Auteur ; Chabchoub, H., Auteur Année de publication : 2011 Article en page(s) : pp. 2013–2022 Note générale : Recherche opérationnelle Langues : Anglais (eng) Mots-clés : Vehicle routing Profitable arc tour problem Metaheuristics Index. décimale : 001.424 Résumé : The profitable arc tour problem is a variant in the vehicle routing problems. It is included in the family of the vehicle routing with profit problems in which a set of vehicle tours are constructed. The objective is to find a set of cycles in the vehicle tours that maximize the collection of profits minus travel costs, subject to constraints limiting the length of cycles that profit is available on arcs. To solve this variant we adopted two metaheuristics based on adaptive memory. We show that our algorithms provide good results in terms of solution quality and running times. DEWEY : 001.424 ISSN : 0160-5682 En ligne : http://www.palgrave-journals.com/jors/journal/v62/n11/abs/jors2010179a.html [article] Hybrid metaheuristics for the profitable arc tour problem [texte imprimé] / J. Euchi, Auteur ; Chabchoub, H., Auteur . - 2011 . - pp. 2013–2022.
Recherche opérationnelle
Langues : Anglais (eng)
in Journal of the operational research society (JORS) > Vol. 62 N° 11 (Novembre 2011) . - pp. 2013–2022
Mots-clés : Vehicle routing Profitable arc tour problem Metaheuristics Index. décimale : 001.424 Résumé : The profitable arc tour problem is a variant in the vehicle routing problems. It is included in the family of the vehicle routing with profit problems in which a set of vehicle tours are constructed. The objective is to find a set of cycles in the vehicle tours that maximize the collection of profits minus travel costs, subject to constraints limiting the length of cycles that profit is available on arcs. To solve this variant we adopted two metaheuristics based on adaptive memory. We show that our algorithms provide good results in terms of solution quality and running times. DEWEY : 001.424 ISSN : 0160-5682 En ligne : http://www.palgrave-journals.com/jors/journal/v62/n11/abs/jors2010179a.html