Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur W. M. Yan
Documents disponibles écrits par cet auteur
Affiner la rechercheBayesian probabilistic approach for the correlations of compression index for marine clays / W. M. Yan in Journal of geotechnical and geoenvironmental engineering, Vol. 135 N° 12 (Décembre 2009)
[article]
in Journal of geotechnical and geoenvironmental engineering > Vol. 135 N° 12 (Décembre 2009) . - pp. 1932–1940
Titre : Bayesian probabilistic approach for the correlations of compression index for marine clays Type de document : texte imprimé Auteurs : W. M. Yan, Auteur ; Yuen, Ka-Veng, Auteur ; Gil Lim Yoon, Auteur Année de publication : 2010 Article en page(s) : pp. 1932–1940 Note générale : Geotechnical and geoenvironmental engineering Langues : Anglais (eng) Mots-clés : Bayesian analysisSoil compressionCorrelationMarine claysProbability Résumé : The compression index is an important soil property that is essential to many geotechnical designs. Over the decades, a number of empirical correlations have been proposed to relate the compressibility to other soil index properties, such as the liquid limit, plasticity index, in situ water content, void ratio, specific gravity, etc. The reliability and thus predictability of these correlations are always being questioned. Moreover, selection between simple and complicated models is a difficult task and often depends on subjective judgments. A more complicated model obviously provides “better fit” to the data but not necessarily offers an acceptable degree of robustness to measurement noise and modeling error. In the present study, the Bayesian probabilistic approach for model class selection is used to revisit the empirical multivariate linear regression formula of the compression index. The criterion in the formula structure selection is based on the plausibility of a class of formulas conditional on the measurement, instead of considering the likelihood only. The plausibility balances between the data fitting capability and sensitivity to measurement and modeling error, which is quantified by the Ockham factor. The Bayesian method is applied to analyze a data set of 795 records, including the compression index and other well-known geotechnical index properties of marine clay samples collected from various sites in South Korea. It turns out that the correlation formula linking the compression index to the initial void ratio and liquid limit possesses the highest plausibility among a total of 18 candidate classes of formulas. The physical significance of this most plausible correlation is addressed. It turns out to be consistent with previous studies and the Bayesian method provides the confirmation from another angle. En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29GT.1943-5606.0000157 [article] Bayesian probabilistic approach for the correlations of compression index for marine clays [texte imprimé] / W. M. Yan, Auteur ; Yuen, Ka-Veng, Auteur ; Gil Lim Yoon, Auteur . - 2010 . - pp. 1932–1940.
Geotechnical and geoenvironmental engineering
Langues : Anglais (eng)
in Journal of geotechnical and geoenvironmental engineering > Vol. 135 N° 12 (Décembre 2009) . - pp. 1932–1940
Mots-clés : Bayesian analysisSoil compressionCorrelationMarine claysProbability Résumé : The compression index is an important soil property that is essential to many geotechnical designs. Over the decades, a number of empirical correlations have been proposed to relate the compressibility to other soil index properties, such as the liquid limit, plasticity index, in situ water content, void ratio, specific gravity, etc. The reliability and thus predictability of these correlations are always being questioned. Moreover, selection between simple and complicated models is a difficult task and often depends on subjective judgments. A more complicated model obviously provides “better fit” to the data but not necessarily offers an acceptable degree of robustness to measurement noise and modeling error. In the present study, the Bayesian probabilistic approach for model class selection is used to revisit the empirical multivariate linear regression formula of the compression index. The criterion in the formula structure selection is based on the plausibility of a class of formulas conditional on the measurement, instead of considering the likelihood only. The plausibility balances between the data fitting capability and sensitivity to measurement and modeling error, which is quantified by the Ockham factor. The Bayesian method is applied to analyze a data set of 795 records, including the compression index and other well-known geotechnical index properties of marine clay samples collected from various sites in South Korea. It turns out that the correlation formula linking the compression index to the initial void ratio and liquid limit possesses the highest plausibility among a total of 18 candidate classes of formulas. The physical significance of this most plausible correlation is addressed. It turns out to be consistent with previous studies and the Bayesian method provides the confirmation from another angle. En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29GT.1943-5606.0000157 Coupled-consolidation modeling of a pile in consolidating ground / W. M. Yan in Journal of geotechnical and geoenvironmental engineering, Vol. 138 N° 7 (Juillet 2012)
[article]
in Journal of geotechnical and geoenvironmental engineering > Vol. 138 N° 7 (Juillet 2012) . - pp. 789–798
Titre : Coupled-consolidation modeling of a pile in consolidating ground Type de document : texte imprimé Auteurs : W. M. Yan, Auteur ; T. K. Sun, Auteur ; L. G. Tham, Auteur Année de publication : 2012 Article en page(s) : pp. 789–798 Note générale : Géotechnique Langues : Anglais (eng) Mots-clés : Negative skin friction Dragload Pile-soil interface Consolidation Résumé : When a pile is embedded in a consolidating ground (e.g., newly reclaimed land), soil may settle more than the pile, thus generating negative skin friction along the pile shaft. This negative friction induces additional axial load to the pile (dragload) and pulls the pile further downward (downdrag). In this paper, the problem is investigated numerically with the finite-element package ABAQUS. It was found that the package defaults an interface model that models the mobilized interface strength in a way that the effect of water pressure was overlooked. Therefore, a modified numerical algorithm is proposed in this study. It amends the model by correctly bringing pore water pressure into the calculation steps. which properly simulates the effective stress-dependent nature of the shear strength at the soil-pile interface. The algorithm is then verified by a self-contained simple to understand simulation. A case history of two piles (one of them coated with bitumen) embedded in a consolidating soft ground is then back analyzed with the proposed algorithm. Fully coupled consolidation and geometric nonlinearity are also considered in the analyses. The transient response of the problem is investigated, including the development of dragload, downdrag, and neutral plane with time. The simulation generally fits well with the field measurements. Parametric studies of the effects of pile head loading reveal that the position of the neutral plane depends not only on the magnitude of the applied pile head loading, but is also affected when the load is applied with respect to the consolidation process. ISSN : 1090-0241 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29GT.1943-5606.0000651 [article] Coupled-consolidation modeling of a pile in consolidating ground [texte imprimé] / W. M. Yan, Auteur ; T. K. Sun, Auteur ; L. G. Tham, Auteur . - 2012 . - pp. 789–798.
Géotechnique
Langues : Anglais (eng)
in Journal of geotechnical and geoenvironmental engineering > Vol. 138 N° 7 (Juillet 2012) . - pp. 789–798
Mots-clés : Negative skin friction Dragload Pile-soil interface Consolidation Résumé : When a pile is embedded in a consolidating ground (e.g., newly reclaimed land), soil may settle more than the pile, thus generating negative skin friction along the pile shaft. This negative friction induces additional axial load to the pile (dragload) and pulls the pile further downward (downdrag). In this paper, the problem is investigated numerically with the finite-element package ABAQUS. It was found that the package defaults an interface model that models the mobilized interface strength in a way that the effect of water pressure was overlooked. Therefore, a modified numerical algorithm is proposed in this study. It amends the model by correctly bringing pore water pressure into the calculation steps. which properly simulates the effective stress-dependent nature of the shear strength at the soil-pile interface. The algorithm is then verified by a self-contained simple to understand simulation. A case history of two piles (one of them coated with bitumen) embedded in a consolidating soft ground is then back analyzed with the proposed algorithm. Fully coupled consolidation and geometric nonlinearity are also considered in the analyses. The transient response of the problem is investigated, including the development of dragload, downdrag, and neutral plane with time. The simulation generally fits well with the field measurements. Parametric studies of the effects of pile head loading reveal that the position of the neutral plane depends not only on the magnitude of the applied pile head loading, but is also affected when the load is applied with respect to the consolidation process. ISSN : 1090-0241 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29GT.1943-5606.0000651
[article]
in Géotechnique > Vol. 61 N° 2 (Fevrier 2011) . - pp. 95–106
Titre : A model for natural soil with bonds Type de document : texte imprimé Auteurs : W. M. Yan, Auteur ; X.S. Li, Auteur Année de publication : 2011 Article en page(s) : pp. 95–106 Note générale : Génie Civil Langues : Anglais (eng) Mots-clés : Constitutive relations Clays Theoretical analysis Shear strength Plasticity Numerical modelling Index. décimale : 624 Constructions du génie civil et du bâtiment. Infrastructures. Ouvrages en terres. Fondations. Tunnels. Ponts et charpentes Résumé : This paper presents a thermodynamically consistent constitutive model for natural soils with bonds. In the model, the free energy (the internal energy available to do work) is contributed partly by the so-called frozen or locked energy, whose evolution is assumed to be homogeneously related to the irrecoverable deformation. During loading, the bonds existing in the natural soil not only boost the dissipation rate but also liberate certain historically accumulated locked energy. Such effects, however, are diminished as loading proceeds and the bonds are destroyed. The novel aspect of the present model is that it accommodates both the Mohr–Coulomb and critical-state failure modes, and the two modes are unified through the evolution law of a thermodynamic force associated with the locked bonding energy. As compared with the classical Cam-clay models, the model contains two additional material constants, where one is proposed by Collins & Kelly to improve the shape of the yield surface, and the other is dedicated to bonding evolution. The calibration procedure for the material parameters is provided. The capability of the model is demonstrated by a series of model simulations on a hypothetical bonded soil under various triaxial loading paths, and the model response is also compared with representative testing results in the literature.
DEWEY : 624.15 ISSN : 0016-8505 En ligne : http://www.icevirtuallibrary.com/content/article/10.1680/geot.8.p.061 [article] A model for natural soil with bonds [texte imprimé] / W. M. Yan, Auteur ; X.S. Li, Auteur . - 2011 . - pp. 95–106.
Génie Civil
Langues : Anglais (eng)
in Géotechnique > Vol. 61 N° 2 (Fevrier 2011) . - pp. 95–106
Mots-clés : Constitutive relations Clays Theoretical analysis Shear strength Plasticity Numerical modelling Index. décimale : 624 Constructions du génie civil et du bâtiment. Infrastructures. Ouvrages en terres. Fondations. Tunnels. Ponts et charpentes Résumé : This paper presents a thermodynamically consistent constitutive model for natural soils with bonds. In the model, the free energy (the internal energy available to do work) is contributed partly by the so-called frozen or locked energy, whose evolution is assumed to be homogeneously related to the irrecoverable deformation. During loading, the bonds existing in the natural soil not only boost the dissipation rate but also liberate certain historically accumulated locked energy. Such effects, however, are diminished as loading proceeds and the bonds are destroyed. The novel aspect of the present model is that it accommodates both the Mohr–Coulomb and critical-state failure modes, and the two modes are unified through the evolution law of a thermodynamic force associated with the locked bonding energy. As compared with the classical Cam-clay models, the model contains two additional material constants, where one is proposed by Collins & Kelly to improve the shape of the yield surface, and the other is dedicated to bonding evolution. The calibration procedure for the material parameters is provided. The capability of the model is demonstrated by a series of model simulations on a hypothetical bonded soil under various triaxial loading paths, and the model response is also compared with representative testing results in the literature.
DEWEY : 624.15 ISSN : 0016-8505 En ligne : http://www.icevirtuallibrary.com/content/article/10.1680/geot.8.p.061