Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Zhu, Guoming G.
Documents disponibles écrits par cet auteur
Affiner la rechercheA dynamic model of an electropneumatic valve actuator for internal combustion engines / Jia Ma in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 132 N° 2 (Mars/Avril 2010)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 2 (Mars/Avril 2010) . - 10 p.
Titre : A dynamic model of an electropneumatic valve actuator for internal combustion engines Type de document : texte imprimé Auteurs : Jia Ma, Auteur ; Zhu, Guoming G., Auteur ; Harold Schock, Auteur Année de publication : 2010 Article en page(s) : 10 p. Note générale : Systèmes dynamiques Langues : Anglais (eng) Mots-clés : Automotive components Compressible flow Exhaust systems Internal combustion engines Pneumatic systems Valves Index. décimale : 629.8 Résumé : This paper presents a detailed model of a novel electropneumatic valve actuator for both engine intake and exhaust valves. The valve actuator's main function is to provide variable valve timing and variable lift capabilities in an internal combustion engine. The pneumatic actuation is used to open the valve and the hydraulic latch mechanism is used to hold the valve open and to reduce valve seating velocity. This combination of pneumatic and hydraulic mechanisms allows the system to operate under low pressure with an energy saving mode. It extracts the full pneumatic energy to open the valve and use the hydraulic latch that consumes almost no energy to hold the valve open. A system dynamics analysis is provided and followed by mathematical modeling. This dynamic model is based on Newton's law, mass conservation, and thermodynamic principles. The air compressibility and liquid compressibility in the hydraulic latch are modeled, and the discontinuous nonlinearity of the compressible flow due to choking is carefully considered. Provision is made for the nonlinear motion of the mechanical components due to the physical constraints. Validation experiments were performed on a Ford 4.6 l four-valve V8 engine head with different air supply pressures and different solenoid pulse inputs. The simulation responses agreed with the experimental results at different engine speeds and supply air pressures. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] [article] A dynamic model of an electropneumatic valve actuator for internal combustion engines [texte imprimé] / Jia Ma, Auteur ; Zhu, Guoming G., Auteur ; Harold Schock, Auteur . - 2010 . - 10 p.
Systèmes dynamiques
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 2 (Mars/Avril 2010) . - 10 p.
Mots-clés : Automotive components Compressible flow Exhaust systems Internal combustion engines Pneumatic systems Valves Index. décimale : 629.8 Résumé : This paper presents a detailed model of a novel electropneumatic valve actuator for both engine intake and exhaust valves. The valve actuator's main function is to provide variable valve timing and variable lift capabilities in an internal combustion engine. The pneumatic actuation is used to open the valve and the hydraulic latch mechanism is used to hold the valve open and to reduce valve seating velocity. This combination of pneumatic and hydraulic mechanisms allows the system to operate under low pressure with an energy saving mode. It extracts the full pneumatic energy to open the valve and use the hydraulic latch that consumes almost no energy to hold the valve open. A system dynamics analysis is provided and followed by mathematical modeling. This dynamic model is based on Newton's law, mass conservation, and thermodynamic principles. The air compressibility and liquid compressibility in the hydraulic latch are modeled, and the discontinuous nonlinearity of the compressible flow due to choking is carefully considered. Provision is made for the nonlinear motion of the mechanical components due to the physical constraints. Validation experiments were performed on a Ford 4.6 l four-valve V8 engine head with different air supply pressures and different solenoid pulse inputs. The simulation responses agreed with the experimental results at different engine speeds and supply air pressures. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] Integrated system ID and control design for an IC engine variable valve timing system / Ren, Zhen in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 133 N° 2 (Mars 2011)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 133 N° 2 (Mars 2011) . - 10 p.
Titre : Integrated system ID and control design for an IC engine variable valve timing system Type de document : texte imprimé Auteurs : Ren, Zhen, Auteur ; Zhu, Guoming G., Auteur Année de publication : 2011 Article en page(s) : 10 p. Note générale : Systèmes dynamiques Langues : Anglais (eng) Mots-clés : Terrain Surface Global positioning system (GPS) Inertial navigation system (INS) Drift Singular value decomposition (SVD) Index. décimale : 629.8 Résumé : This paper applies integrated system modeling and control design process to a continuously variable valve timing (VVT) actuator system that has different control input and cam position feedback sample rates. Due to high cam shaft torque disturbance and high actuator open-loop gain, it is also difficult to maintain the cam phase at the desired constant level with an open-loop controller for system identification. As a result, multirate closed-loop system identification becomes necessary. For this study, a multirate closed-loop system identification method, pseudo-random binary signal q-Markov Cover, was used for obtaining linearized system models of the nonlinear physical system at different engine operational conditions; and output covariance constraint (OCC) controller, an H2 controller, was designed based upon the identified nominal model and evaluated on the VVT test bench. Performance of the designed OCC controller was compared with that of the well-tuned baseline proportional-integral (PI) controller on the test bench. Results show that the OCC controller uses less control effort and has significant lower overshoot than those of PI ones. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013300 [...] [article] Integrated system ID and control design for an IC engine variable valve timing system [texte imprimé] / Ren, Zhen, Auteur ; Zhu, Guoming G., Auteur . - 2011 . - 10 p.
Systèmes dynamiques
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 133 N° 2 (Mars 2011) . - 10 p.
Mots-clés : Terrain Surface Global positioning system (GPS) Inertial navigation system (INS) Drift Singular value decomposition (SVD) Index. décimale : 629.8 Résumé : This paper applies integrated system modeling and control design process to a continuously variable valve timing (VVT) actuator system that has different control input and cam position feedback sample rates. Due to high cam shaft torque disturbance and high actuator open-loop gain, it is also difficult to maintain the cam phase at the desired constant level with an open-loop controller for system identification. As a result, multirate closed-loop system identification becomes necessary. For this study, a multirate closed-loop system identification method, pseudo-random binary signal q-Markov Cover, was used for obtaining linearized system models of the nonlinear physical system at different engine operational conditions; and output covariance constraint (OCC) controller, an H2 controller, was designed based upon the identified nominal model and evaluated on the VVT test bench. Performance of the designed OCC controller was compared with that of the well-tuned baseline proportional-integral (PI) controller on the test bench. Results show that the OCC controller uses less control effort and has significant lower overshoot than those of PI ones. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013300 [...] Sliding mode control of both air-to-fuel and fuel ratios for a dual-fuel internal combustion engine / Stephen Pace in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 134 N° 3 (Mai 2012)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 134 N° 3 (Mai 2012) . - 12 p.
Titre : Sliding mode control of both air-to-fuel and fuel ratios for a dual-fuel internal combustion engine Type de document : texte imprimé Auteurs : Stephen Pace, Auteur ; Zhu, Guoming G., Auteur Année de publication : 2012 Article en page(s) : 12 p. Note générale : Dynamic systems Langues : Anglais (eng) Mots-clés : Sliding mode control Powertrain systems Air-to-fuel ratio Dual-fuel engine systems Hardware-in-the-loop simulations Index. décimale : 629.8 Résumé : A multi-input-multi-output (MIMO) sliding mode control scheme was developed with guaranteed stability to simultaneously control air-to-fuel ratio (AFR) and fuel ratios to desired levels under various air flow disturbances by regulating the mass flow rates of engine port-fuel-injection (PFI) and direct injection (DI) systems. The sliding mode control performance was compared with a baseline multiloop proportional integral differential (PID) controller through simulations and showed improvements. A four cylinder mean value engine model and the proposed sliding mode controller were implemented into a hardware-in-the-loop (HIL) simulator and a target engine control module, and HIL simulations were conducted to validate the developed controller for potential implementation in an automotive engine. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA000134000003 [...] [article] Sliding mode control of both air-to-fuel and fuel ratios for a dual-fuel internal combustion engine [texte imprimé] / Stephen Pace, Auteur ; Zhu, Guoming G., Auteur . - 2012 . - 12 p.
Dynamic systems
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 134 N° 3 (Mai 2012) . - 12 p.
Mots-clés : Sliding mode control Powertrain systems Air-to-fuel ratio Dual-fuel engine systems Hardware-in-the-loop simulations Index. décimale : 629.8 Résumé : A multi-input-multi-output (MIMO) sliding mode control scheme was developed with guaranteed stability to simultaneously control air-to-fuel ratio (AFR) and fuel ratios to desired levels under various air flow disturbances by regulating the mass flow rates of engine port-fuel-injection (PFI) and direct injection (DI) systems. The sliding mode control performance was compared with a baseline multiloop proportional integral differential (PID) controller through simulations and showed improvements. A four cylinder mean value engine model and the proposed sliding mode controller were implemented into a hardware-in-the-loop (HIL) simulator and a target engine control module, and HIL simulations were conducted to validate the developed controller for potential implementation in an automotive engine. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA000134000003 [...]