Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Guiatni, Mohamed
Documents disponibles écrits par cet auteur
Affiner la rechercheMobile robot control via brain computer interface and fatigue detection based on EEG signals / Younes Moussaoui
Titre : Mobile robot control via brain computer interface and fatigue detection based on EEG signals Type de document : document électronique Auteurs : Younes Moussaoui, Auteur ; Mahdi Latreche, Auteur ; Tadjine, Mohamed, Directeur de thèse ; Chakir, Messaoud, Directeur de thèse ; Guiatni, Mohamed, Directeur de thèse Editeur : [S.l.] : [s.n.] Année de publication : 2021 Importance : 132 f., 1 fichier PDF (10 Mo) Présentation : ill. Format : 30 cm Note générale : Mode d'accès : accès au texte intégral par intranet.
Mémoire de Projet de Fin d’Études : Automatique : Alger, École Nationale Polytechnique : 2021
Bibliogr. f. 125-132Langues : Anglais (eng) Mots-clés : EEG
BCI
Motor imagery
Fatigue
Feature extraction
Machine learning
Deep
Learning
Genetic algorithmRésumé : In the last decade, the rapid development of complex methods for recording brain signals and the exponential rise of available computing power as well as the increased awareness of brain dysfunctions and mental disorders, have led researchers to use large-scale neurophysiological recordings for abnormal behaviours detection, diseases diagnosis, and motor control. Electroencephalograms (EEG) are a very popular measurement for brain activities because of their non-invasive nature and their wide spectrum of possible applications. In this context, two applications have been developed in this project, the first aims to design a novel Brain Computer Interface (BCI) architecture based on Motor Imagery (MI) for real time control of a mobile robot. Spectral power
computing, multi-class Common Spatial Pattern (CSP), and Machine Learning (ML) have been used to reach this aim. The second involves the proposal of an approach for fatigue detection using machine Learning (ML), Deep Learning (DL), and Genetic Algorithms (GA).Mobile robot control via brain computer interface and fatigue detection based on EEG signals [document électronique] / Younes Moussaoui, Auteur ; Mahdi Latreche, Auteur ; Tadjine, Mohamed, Directeur de thèse ; Chakir, Messaoud, Directeur de thèse ; Guiatni, Mohamed, Directeur de thèse . - [S.l.] : [s.n.], 2021 . - 132 f., 1 fichier PDF (10 Mo) : ill. ; 30 cm.
Mode d'accès : accès au texte intégral par intranet.
Mémoire de Projet de Fin d’Études : Automatique : Alger, École Nationale Polytechnique : 2021
Bibliogr. f. 125-132
Langues : Anglais (eng)
Mots-clés : EEG
BCI
Motor imagery
Fatigue
Feature extraction
Machine learning
Deep
Learning
Genetic algorithmRésumé : In the last decade, the rapid development of complex methods for recording brain signals and the exponential rise of available computing power as well as the increased awareness of brain dysfunctions and mental disorders, have led researchers to use large-scale neurophysiological recordings for abnormal behaviours detection, diseases diagnosis, and motor control. Electroencephalograms (EEG) are a very popular measurement for brain activities because of their non-invasive nature and their wide spectrum of possible applications. In this context, two applications have been developed in this project, the first aims to design a novel Brain Computer Interface (BCI) architecture based on Motor Imagery (MI) for real time control of a mobile robot. Spectral power
computing, multi-class Common Spatial Pattern (CSP), and Machine Learning (ML) have been used to reach this aim. The second involves the proposal of an approach for fatigue detection using machine Learning (ML), Deep Learning (DL), and Genetic Algorithms (GA).Exemplaires
Code-barres Cote Support Localisation Section Disponibilité Spécialité Etat_Exemplaire 03 PA00521 Ressources électroniques Bibliothèque centrale Projet Fin d'Etudes Disponible Automatique Téléchargeable Modeling identification and control of peltier thermoelectic modules for telepresence / Guiatni, Mohamed in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 133 N° 3 (Mai 2011)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 133 N° 3 (Mai 2011) . - 08 p.
Titre : Modeling identification and control of peltier thermoelectic modules for telepresence Type de document : texte imprimé Auteurs : Guiatni, Mohamed, Auteur ; Kheddar, Abderrahmane, Auteur Année de publication : 2011 Article en page(s) : 08 p. Note générale : Systèmes dynamiques Langues : Anglais (eng) Mots-clés : Autoregressive moving average processes Heat pumps Peltier effect Telecontrol Thermal conductivity Index. décimale : 629.8 Résumé : This research deals with thermal rendering for telepresence applications. We present the modeling and identification of thermo-electric modules (TEMs) to be used either as part of a thermal display or a remote thermal probe. First, TEMs are modeled in steady- and unsteady-state dynamics using recursive nonlinear autoregressive moving average models for both temperature and heat flux. The proposed models are convenient for simulation, control, electronic, and thermal engineering. They allow understanding the functionality of the heat pumps and facilitate the solving of cooling/heating problems without the need for expertise in thermal theory. Then, these models are used in a novel thermal rendering approach that is based on the estimation of the temperature in contact for both the finger and the probed remote object in a telepresence setup. The thermal feedback is provided by a bilateral control between the master (thermal display) and the slave (thermal probe robotic finger). Experimental results validating the models and the proposed thermal rendering scheme are presented and discussed. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013300 [...] [article] Modeling identification and control of peltier thermoelectic modules for telepresence [texte imprimé] / Guiatni, Mohamed, Auteur ; Kheddar, Abderrahmane, Auteur . - 2011 . - 08 p.
Systèmes dynamiques
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 133 N° 3 (Mai 2011) . - 08 p.
Mots-clés : Autoregressive moving average processes Heat pumps Peltier effect Telecontrol Thermal conductivity Index. décimale : 629.8 Résumé : This research deals with thermal rendering for telepresence applications. We present the modeling and identification of thermo-electric modules (TEMs) to be used either as part of a thermal display or a remote thermal probe. First, TEMs are modeled in steady- and unsteady-state dynamics using recursive nonlinear autoregressive moving average models for both temperature and heat flux. The proposed models are convenient for simulation, control, electronic, and thermal engineering. They allow understanding the functionality of the heat pumps and facilitate the solving of cooling/heating problems without the need for expertise in thermal theory. Then, these models are used in a novel thermal rendering approach that is based on the estimation of the temperature in contact for both the finger and the probed remote object in a telepresence setup. The thermal feedback is provided by a bilateral control between the master (thermal display) and the slave (thermal probe robotic finger). Experimental results validating the models and the proposed thermal rendering scheme are presented and discussed. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013300 [...]