Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur P. J. Bourne-Webb
Documents disponibles écrits par cet auteur
Affiner la rechercheAnalysis of model sheet pile walls with plastic hinges / P. J. Bourne-Webb in Géotechnique, Vol. 61 N° 6 (Juin 2011)
[article]
in Géotechnique > Vol. 61 N° 6 (Juin 2011) . - pp. 487–499
Titre : Analysis of model sheet pile walls with plastic hinges Type de document : texte imprimé Auteurs : P. J. Bourne-Webb, Auteur ; D. M. Potts, Auteur ; D. Konig, Auteur Année de publication : 2011 Article en page(s) : pp. 487–499 Note générale : Génie Civil Langues : Anglais (eng) Mots-clés : Limit state design/analysis Numerical modelling Centrifuge modelling Standards Sheet piles and cofferdams Index. décimale : 624 Constructions du génie civil et du bâtiment. Infrastructures. Ouvrages en terres. Fondations. Tunnels. Ponts et charpentes Résumé : As part of a wider project investigating the implications of Eurocode 3, Design of steel structures – Part 5: Piling, centrifuge testing of model sheet pile walls and numerical back-analysis were undertaken. The aims of the study were to examine the effect of plastic hinging on embedded retaining wall response, and to verify calculation methods for use in wider generic calculations. Physical modelling of an anchored wall embedded in dry sand was undertaken. In some of the tests a hinge zone was introduced into the wall in order to reproduce a kinematic mechanism similar to that associated with plastic hinge formation. Finite-element calculations were undertaken using Lade's double-hardening cap model to represent the behaviour of the sand. The analyses generally yielded good accord with the test results in many aspects of the wall behaviour. In terms of the aims of the testing, the study of the effect of plastic hinging was not realistically captured, because the hinge zone was present from the outset of the test, allowing greater than expected earth pressure redistribution, and because the moment–curvature characteristic of the notched wall did not reproduce the buckling effects seen in the plastic bending response of steel sheet piles. On the other hand, the satisfactory agreement between the test observations and the numerical predictions gave confidence in the use of the calculation model for further generic calculations using realistic steel sheet pile moment–plastic curvature characteristics.
DEWEY : 624.15 ISSN : 0016-8505 En ligne : http://www.icevirtuallibrary.com/content/article/10.1680/geot.9.p.061 [article] Analysis of model sheet pile walls with plastic hinges [texte imprimé] / P. J. Bourne-Webb, Auteur ; D. M. Potts, Auteur ; D. Konig, Auteur . - 2011 . - pp. 487–499.
Génie Civil
Langues : Anglais (eng)
in Géotechnique > Vol. 61 N° 6 (Juin 2011) . - pp. 487–499
Mots-clés : Limit state design/analysis Numerical modelling Centrifuge modelling Standards Sheet piles and cofferdams Index. décimale : 624 Constructions du génie civil et du bâtiment. Infrastructures. Ouvrages en terres. Fondations. Tunnels. Ponts et charpentes Résumé : As part of a wider project investigating the implications of Eurocode 3, Design of steel structures – Part 5: Piling, centrifuge testing of model sheet pile walls and numerical back-analysis were undertaken. The aims of the study were to examine the effect of plastic hinging on embedded retaining wall response, and to verify calculation methods for use in wider generic calculations. Physical modelling of an anchored wall embedded in dry sand was undertaken. In some of the tests a hinge zone was introduced into the wall in order to reproduce a kinematic mechanism similar to that associated with plastic hinge formation. Finite-element calculations were undertaken using Lade's double-hardening cap model to represent the behaviour of the sand. The analyses generally yielded good accord with the test results in many aspects of the wall behaviour. In terms of the aims of the testing, the study of the effect of plastic hinging was not realistically captured, because the hinge zone was present from the outset of the test, allowing greater than expected earth pressure redistribution, and because the moment–curvature characteristic of the notched wall did not reproduce the buckling effects seen in the plastic bending response of steel sheet piles. On the other hand, the satisfactory agreement between the test observations and the numerical predictions gave confidence in the use of the calculation model for further generic calculations using realistic steel sheet pile moment–plastic curvature characteristics.
DEWEY : 624.15 ISSN : 0016-8505 En ligne : http://www.icevirtuallibrary.com/content/article/10.1680/geot.9.p.061 Thermo-mechanical behaviour of energy piles / B. L. Amatya in Géotechnique, Vol. 62 N° 6 (Juin 2012)
[article]
in Géotechnique > Vol. 62 N° 6 (Juin 2012) . - pp. 503 –519
Titre : Thermo-mechanical behaviour of energy piles Type de document : texte imprimé Auteurs : B. L. Amatya, Auteur ; K. Soga, Auteur ; P. J. Bourne-Webb, Auteur Année de publication : 2012 Article en page(s) : pp. 503 –519 Note générale : Génie Civil Langues : Anglais (eng) Mots-clés : Field instrumentation Full-scale tests Piles Design Temperature effects Stress analysis Résumé : Energy piles are an effective and economic means of using geothermal energy resources for heating and cooling buildings, contributing to legislative requirements for renewable energy in new construction. While such piles have been used for around 25 years with no apparent detrimental effect, there is limited understanding of their thermo-mechanical behaviour. This paper synthesises the results from three published field studies and illustrates some of the engineering behaviour of such piles during heating and cooling. Simplified load transfer mechanisms for a single pile subjected to pure thermal loadings (i.e. without mechanical load) and combined thermo-mechanical loadings have been developed and are used to interpret the field data with regard to change in axial stress and shaft friction during heating and cooling. The effect of end restraint and ground conditions on the thermo-mechanical response of energy piles is discussed. Values of change in axial stress and mobilised shaft friction due to thermal effects that may be useful in the design of energy piles are presented. DEWEY : 624.15 ISSN : 0016-8505 En ligne : http://www.icevirtuallibrary.com/content/article/10.1680/geot.10.P.116 [article] Thermo-mechanical behaviour of energy piles [texte imprimé] / B. L. Amatya, Auteur ; K. Soga, Auteur ; P. J. Bourne-Webb, Auteur . - 2012 . - pp. 503 –519.
Génie Civil
Langues : Anglais (eng)
in Géotechnique > Vol. 62 N° 6 (Juin 2012) . - pp. 503 –519
Mots-clés : Field instrumentation Full-scale tests Piles Design Temperature effects Stress analysis Résumé : Energy piles are an effective and economic means of using geothermal energy resources for heating and cooling buildings, contributing to legislative requirements for renewable energy in new construction. While such piles have been used for around 25 years with no apparent detrimental effect, there is limited understanding of their thermo-mechanical behaviour. This paper synthesises the results from three published field studies and illustrates some of the engineering behaviour of such piles during heating and cooling. Simplified load transfer mechanisms for a single pile subjected to pure thermal loadings (i.e. without mechanical load) and combined thermo-mechanical loadings have been developed and are used to interpret the field data with regard to change in axial stress and shaft friction during heating and cooling. The effect of end restraint and ground conditions on the thermo-mechanical response of energy piles is discussed. Values of change in axial stress and mobilised shaft friction due to thermal effects that may be useful in the design of energy piles are presented. DEWEY : 624.15 ISSN : 0016-8505 En ligne : http://www.icevirtuallibrary.com/content/article/10.1680/geot.10.P.116