Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur C. L. Chen
Documents disponibles écrits par cet auteur
Affiner la rechercheFlow characteristics in a curved rectangular channel with variable cross-sectional area / Avijit Bhunia in Transactions of the ASME . Journal of fluids engineering, Vol. 131 N° 9 (Septembre 2009)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 131 N° 9 (Septembre 2009) . - 16 p.
Titre : Flow characteristics in a curved rectangular channel with variable cross-sectional area Type de document : texte imprimé Auteurs : Avijit Bhunia, Auteur ; C. L. Chen, Auteur Année de publication : 2009 Article en page(s) : 16 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : Laminar air flow; curved rectangular channel; cross-sectional area Résumé : Laminar air flow through a curved rectangular channel with a variable cross-sectional (c/s) area (diverging-converging channel) is computationally investigated. Such a flow passage is formed between the two fin walls of a 90 deg bend curved fin heat sink, used in avionics cooling. Simulations are carried out for two different configurations: (a) a curved channel with long, straight, constant c/s area inlet and outlet sections (entry and exit lengths); and (b) a short, curved channel with no entry and exit lengths. Formation of a complex 3D flow pattern and its evolution in space is studied through numerical flow visualization. Results show that a secondary motion sets in the radial direction of the curved section, which in combination with the axial (bulk) flow leads to the formation of a base vortex. In addition, under certain circumstances the axial and secondary flow separate from multiple locations on the channel walls, creating Dean vortices and separation bubbles. Velocity above which the Dean vortices appear is cast in dimensionless form as the critical Dean number, which is calculated to be 129. Investigation of the friction factor reveals that pressure drop in the channel is governed by both the curvature effect as well as the area expansion effect. For a short curved channel where area expansion effect dominates, pressure drop for developing flow can be even less than that of a straight channel. A comparison with the flow in a constant c/s area, curved channel shows that the variable c/s area channel geometry leads to a lower critical Dean number and friction factor. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...] [article] Flow characteristics in a curved rectangular channel with variable cross-sectional area [texte imprimé] / Avijit Bhunia, Auteur ; C. L. Chen, Auteur . - 2009 . - 16 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 131 N° 9 (Septembre 2009) . - 16 p.
Mots-clés : Laminar air flow; curved rectangular channel; cross-sectional area Résumé : Laminar air flow through a curved rectangular channel with a variable cross-sectional (c/s) area (diverging-converging channel) is computationally investigated. Such a flow passage is formed between the two fin walls of a 90 deg bend curved fin heat sink, used in avionics cooling. Simulations are carried out for two different configurations: (a) a curved channel with long, straight, constant c/s area inlet and outlet sections (entry and exit lengths); and (b) a short, curved channel with no entry and exit lengths. Formation of a complex 3D flow pattern and its evolution in space is studied through numerical flow visualization. Results show that a secondary motion sets in the radial direction of the curved section, which in combination with the axial (bulk) flow leads to the formation of a base vortex. In addition, under certain circumstances the axial and secondary flow separate from multiple locations on the channel walls, creating Dean vortices and separation bubbles. Velocity above which the Dean vortices appear is cast in dimensionless form as the critical Dean number, which is calculated to be 129. Investigation of the friction factor reveals that pressure drop in the channel is governed by both the curvature effect as well as the area expansion effect. For a short curved channel where area expansion effect dominates, pressure drop for developing flow can be even less than that of a straight channel. A comparison with the flow in a constant c/s area, curved channel shows that the variable c/s area channel geometry leads to a lower critical Dean number and friction factor. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...] On the scalability of liquid microjet array impingement cooling for large area systems / Avijit Bhunia in Journal of heat transfer, Vol. 133 N° 6 (Juin 2011)
[article]
in Journal of heat transfer > Vol. 133 N° 6 (Juin 2011) . - pp. [064501/1-7]
Titre : On the scalability of liquid microjet array impingement cooling for large area systems Type de document : texte imprimé Auteurs : Avijit Bhunia, Auteur ; C. L. Chen, Auteur Année de publication : 2011 Article en page(s) : pp. [064501/1-7] Note générale : Physique Langues : Anglais (eng) Mots-clés : Liquid microjet Impingement Single phase heat transfer Large area cooling Index. décimale : 536 Chaleur. Thermodynamique Résumé : The necessity for an efficient thermal management system covering large areas is growing rapidly with the push toward more electric systems. A significant amount of research over the past 2 decades has conclusively proved the suitability of jet, droplet, or spray impingement for high heat flux cooling. However, all these research consider small heat source areas, typically about a few cm2. Can a large array of impingement pattern, covering a much wider area, achieve similar heat flux levels? This article presents liquid microjet array impingement cooling of a heat source that is about two orders of magnitude larger than studied in the previous works. Experiments are carried out with 441 jets of de-ionized water and a dielectric liquid HFE7200, each 200 µm diameter. The jets impinge on a 189 cm2 area surface, in free surface and confined jet configurations. The average heat transfer coefficient values of the present experiment are compared with correlations from the literature. While some correlations show excellent agreement, others deviate significantly. The ensuing discussion suggests that the post-impingement liquid dynamics, particularly the collision between the liquid fronts on the surface created from surrounding jets, is the most important criterion dictating the average heat transfer coefficient. Thus, similar thermal performance can be achieved, irrespective of the length scale, as long as the flow dynamics are similar. These results prove the scalability of the liquid microjet array impingement technique for cooling a few cm2 area to a few hundred cm2 area.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=JHTRAO&ONLINE=YES&smode= [...] [article] On the scalability of liquid microjet array impingement cooling for large area systems [texte imprimé] / Avijit Bhunia, Auteur ; C. L. Chen, Auteur . - 2011 . - pp. [064501/1-7].
Physique
Langues : Anglais (eng)
in Journal of heat transfer > Vol. 133 N° 6 (Juin 2011) . - pp. [064501/1-7]
Mots-clés : Liquid microjet Impingement Single phase heat transfer Large area cooling Index. décimale : 536 Chaleur. Thermodynamique Résumé : The necessity for an efficient thermal management system covering large areas is growing rapidly with the push toward more electric systems. A significant amount of research over the past 2 decades has conclusively proved the suitability of jet, droplet, or spray impingement for high heat flux cooling. However, all these research consider small heat source areas, typically about a few cm2. Can a large array of impingement pattern, covering a much wider area, achieve similar heat flux levels? This article presents liquid microjet array impingement cooling of a heat source that is about two orders of magnitude larger than studied in the previous works. Experiments are carried out with 441 jets of de-ionized water and a dielectric liquid HFE7200, each 200 µm diameter. The jets impinge on a 189 cm2 area surface, in free surface and confined jet configurations. The average heat transfer coefficient values of the present experiment are compared with correlations from the literature. While some correlations show excellent agreement, others deviate significantly. The ensuing discussion suggests that the post-impingement liquid dynamics, particularly the collision between the liquid fronts on the surface created from surrounding jets, is the most important criterion dictating the average heat transfer coefficient. Thus, similar thermal performance can be achieved, irrespective of the length scale, as long as the flow dynamics are similar. These results prove the scalability of the liquid microjet array impingement technique for cooling a few cm2 area to a few hundred cm2 area.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=JHTRAO&ONLINE=YES&smode= [...] Pressure drop in generating free-surface liquid microjet array from short cylindrical orifices / Avijit Bhunia in Transactions of the ASME . Journal of fluids engineering, Vol. 133 N° 6 (Juin 2011)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 133 N° 6 (Juin 2011) . - 08 p.
Titre : Pressure drop in generating free-surface liquid microjet array from short cylindrical orifices Type de document : texte imprimé Auteurs : Avijit Bhunia, Auteur ; C. L. Chen, Auteur Année de publication : 2011 Article en page(s) : 08 p. Note générale : Fluids engineering Langues : Anglais (eng) Mots-clés : Boundary layer turbulence Confined flow Cooling Jets Laminar flow Microfluidics Nozzles Orifices (mechanical) Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Liquid microjet arrays have received a lot of research attention in recent years due to its high heat flux cooling capability. The microjets are generated from a jet head cavity with a liquid inlet port on one wall and an array of micro-orifices on another wall. An important, yet relatively less studied aspect of the topic is the pressure (also frequently referred to as the pressure drop) necessary to generate the jets and maintain certain jet velocity. In this study we investigate the pressure drop for17 different array patterns of liquid jet issuing in a surrounding gas (air) medium, i.e., a free surface liquid jet. The number of jets varies from 1 to 126, while the jet diameter ranges from 99 to 208 µm. The current results show more than 200% deviation from the existing correlations in the literature. Through a systematic experimental study we identify the functional dependence of pressure drop on the various geometric parameters. The results uncover the reasons behind the widespread disagreement between the current data and the existing correlations. Pressure drop shows a weak, nonlinear dependence on the orifice wall thickness, compared to the linear dependence used in the existing correlations. Furthermore, the depth of the jet head cavity is shown to be an important parameter dictating pressure drop, unlike the previous studies that inherently assume the cavity to be an infinite reservoir. A new dimensionless pressure drop parameter is proposed and its variation with the jet Reynolds number is correlated. The new correlation predicts all the experimental data within a ± 10% range. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA400013 [...] [article] Pressure drop in generating free-surface liquid microjet array from short cylindrical orifices [texte imprimé] / Avijit Bhunia, Auteur ; C. L. Chen, Auteur . - 2011 . - 08 p.
Fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 133 N° 6 (Juin 2011) . - 08 p.
Mots-clés : Boundary layer turbulence Confined flow Cooling Jets Laminar flow Microfluidics Nozzles Orifices (mechanical) Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Liquid microjet arrays have received a lot of research attention in recent years due to its high heat flux cooling capability. The microjets are generated from a jet head cavity with a liquid inlet port on one wall and an array of micro-orifices on another wall. An important, yet relatively less studied aspect of the topic is the pressure (also frequently referred to as the pressure drop) necessary to generate the jets and maintain certain jet velocity. In this study we investigate the pressure drop for17 different array patterns of liquid jet issuing in a surrounding gas (air) medium, i.e., a free surface liquid jet. The number of jets varies from 1 to 126, while the jet diameter ranges from 99 to 208 µm. The current results show more than 200% deviation from the existing correlations in the literature. Through a systematic experimental study we identify the functional dependence of pressure drop on the various geometric parameters. The results uncover the reasons behind the widespread disagreement between the current data and the existing correlations. Pressure drop shows a weak, nonlinear dependence on the orifice wall thickness, compared to the linear dependence used in the existing correlations. Furthermore, the depth of the jet head cavity is shown to be an important parameter dictating pressure drop, unlike the previous studies that inherently assume the cavity to be an infinite reservoir. A new dimensionless pressure drop parameter is proposed and its variation with the jet Reynolds number is correlated. The new correlation predicts all the experimental data within a ± 10% range. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA400013 [...]