Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Stuart A. Jacobson
Documents disponibles écrits par cet auteur
Affiner la rechercheDesign and characterization of a liquid-fueled microcombustor / Peck, Jay in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 7 (Juillet 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 7 (Juillet 2011) . - 10 p.
Titre : Design and characterization of a liquid-fueled microcombustor Type de document : texte imprimé Auteurs : Peck, Jay, Auteur ; Stuart A. Jacobson, Auteur ; Ian A. Waitz, Auteur Année de publication : 2011 Article en page(s) : 10 p. Note générale : Turbines à gaz Langues : Anglais (eng) Mots-clés : Combustion Gas turbines Heat engines Thermal stresses Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : As part of an effort to develop a microscale gas turbine engine, this paper presents the design and experimental characterization of a microcombustor that catalytically burns JP8 fuel. Due to the high energy densities of hydrocarbon fuels, microscale heat engines based on them may enable compact power sources with specific energies higher than those of current battery systems. In addition, utilizing a commonly available logistics fuel would provide advantages for military applications. Thus, a microscale engine burning JP8 fuel is attractive as a portable power source. A liquid-fueled microcombustor with a combustion chamber volume of 1.4 cm3 and an overall die size of 36.4×36.4×6.5 mm3 was designed, microfabricated, and experimentally characterized. Two configurations were tested and compared, one with the combustion chamber entirely filled with a catalyst and the other with the combustion chamber partially filled with a catalyst. In the configuration filled with a catalyst, JP8 combustion was sustained at mass flow rates up to 0.1 g/s and an exit gas temperature of 780 K; an overall combustor efficiency of 19% and a power density of 43 MW/m3 were achieved. The primary limitation on increasing the mass flow rates and temperature further was the structural failure of the device due to thermal stresses. With the partially filled configuration, a mass flow rate of 0.2 g/s and a corresponding power density of 54 MW/m3 were obtained. The exit gas temperature for the partially filled configuration was as high as 720 K, and the maximum overall efficiency was over 22%. Although the reduced amount of catalyst led to incomplete combustion, smaller thermal losses resulted in an increase in the overall combustor efficiency and power density. A nondimensional operating map was constructed based on the experiment, and it suggests that improving the thermal efficiency would be necessary to achieve higher efficiencies in the device. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013300 [...] [article] Design and characterization of a liquid-fueled microcombustor [texte imprimé] / Peck, Jay, Auteur ; Stuart A. Jacobson, Auteur ; Ian A. Waitz, Auteur . - 2011 . - 10 p.
Turbines à gaz
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 7 (Juillet 2011) . - 10 p.
Mots-clés : Combustion Gas turbines Heat engines Thermal stresses Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : As part of an effort to develop a microscale gas turbine engine, this paper presents the design and experimental characterization of a microcombustor that catalytically burns JP8 fuel. Due to the high energy densities of hydrocarbon fuels, microscale heat engines based on them may enable compact power sources with specific energies higher than those of current battery systems. In addition, utilizing a commonly available logistics fuel would provide advantages for military applications. Thus, a microscale engine burning JP8 fuel is attractive as a portable power source. A liquid-fueled microcombustor with a combustion chamber volume of 1.4 cm3 and an overall die size of 36.4×36.4×6.5 mm3 was designed, microfabricated, and experimentally characterized. Two configurations were tested and compared, one with the combustion chamber entirely filled with a catalyst and the other with the combustion chamber partially filled with a catalyst. In the configuration filled with a catalyst, JP8 combustion was sustained at mass flow rates up to 0.1 g/s and an exit gas temperature of 780 K; an overall combustor efficiency of 19% and a power density of 43 MW/m3 were achieved. The primary limitation on increasing the mass flow rates and temperature further was the structural failure of the device due to thermal stresses. With the partially filled configuration, a mass flow rate of 0.2 g/s and a corresponding power density of 54 MW/m3 were obtained. The exit gas temperature for the partially filled configuration was as high as 720 K, and the maximum overall efficiency was over 22%. Although the reduced amount of catalyst led to incomplete combustion, smaller thermal losses resulted in an increase in the overall combustor efficiency and power density. A nondimensional operating map was constructed based on the experiment, and it suggests that improving the thermal efficiency would be necessary to achieve higher efficiencies in the device. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013300 [...]