Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Valentin Heller
Documents disponibles écrits par cet auteur
Affiner la rechercheScale effects in physical hydraulic engineering models / Valentin Heller in Journal of hydraulic research, Vol. 49 N° 3 (Mai/Juin 2011)
[article]
in Journal of hydraulic research > Vol. 49 N° 3 (Mai/Juin 2011) . - pp. 293-306
Titre : Scale effects in physical hydraulic engineering models Type de document : texte imprimé Auteurs : Valentin Heller, Auteur Année de publication : 2011 Article en page(s) : pp. 293-306 Langues : Anglais (eng) Mots-clés : Dimensional analysis Froude similarity Landslide generated impulse wave Physical hydraulic modelling Reynolds similarity Scale effect Scale series Similarity theory Index. décimale : 627 Ingénierie des cours d'eau naturels, des ports, des rades et des cotes. Installations de navigation, de dragage, de récupération et de sauvetage. Barrages et centrales électriques hydrauliques Résumé : Scale effects arise due to force ratios which are not identical between a model and its real-world prototype and result in deviations between the up-scaled model and prototype observations. This review article considers mechanical, Froude and Reynolds model–prototype similarities, describes scale effects for typical hydraulic flow phenomena and discusses how scale effects are avoided, compensated or corrected. Four approaches are addressed to obtain model–prototype similarity, to quantify scale effects and to define limiting criteria under which they can be neglected. These are inspectional analysis, dimensional analysis, calibration and scale series, which are applied to landslide generated impulse waves. Tables include both limiting criteria to avoid significant scale effects and typical scales of physical hydraulic engineering models for a wide variety of hydraulic flow phenomena. The article further shows why it is challenging to model sediment transport and distensible structures in a physical hydraulic model without significant scale effects. Possible future research directions are finally suggested.
DEWEY : 627 ISSN : 0022-1686 En ligne : http://www.tandfonline.com/doi/abs/10.1080/00221686.2011.578914 [article] Scale effects in physical hydraulic engineering models [texte imprimé] / Valentin Heller, Auteur . - 2011 . - pp. 293-306.
Langues : Anglais (eng)
in Journal of hydraulic research > Vol. 49 N° 3 (Mai/Juin 2011) . - pp. 293-306
Mots-clés : Dimensional analysis Froude similarity Landslide generated impulse wave Physical hydraulic modelling Reynolds similarity Scale effect Scale series Similarity theory Index. décimale : 627 Ingénierie des cours d'eau naturels, des ports, des rades et des cotes. Installations de navigation, de dragage, de récupération et de sauvetage. Barrages et centrales électriques hydrauliques Résumé : Scale effects arise due to force ratios which are not identical between a model and its real-world prototype and result in deviations between the up-scaled model and prototype observations. This review article considers mechanical, Froude and Reynolds model–prototype similarities, describes scale effects for typical hydraulic flow phenomena and discusses how scale effects are avoided, compensated or corrected. Four approaches are addressed to obtain model–prototype similarity, to quantify scale effects and to define limiting criteria under which they can be neglected. These are inspectional analysis, dimensional analysis, calibration and scale series, which are applied to landslide generated impulse waves. Tables include both limiting criteria to avoid significant scale effects and typical scales of physical hydraulic engineering models for a wide variety of hydraulic flow phenomena. The article further shows why it is challenging to model sediment transport and distensible structures in a physical hydraulic model without significant scale effects. Possible future research directions are finally suggested.
DEWEY : 627 ISSN : 0022-1686 En ligne : http://www.tandfonline.com/doi/abs/10.1080/00221686.2011.578914