Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Ray, Asok
Documents disponibles écrits par cet auteur
Affiner la rechercheData-driven fault detection in aircraft engines with noisy sensor measurements / Sarkar, Soumik in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 8 (Août 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 8 (Août 2011) . - 10 p.
Titre : Data-driven fault detection in aircraft engines with noisy sensor measurements Type de document : texte imprimé Auteurs : Sarkar, Soumik, Auteur ; Xin Jin, Auteur ; Ray, Asok, Auteur Année de publication : 2011 Article en page(s) : 10 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Aerospace engines Aerospace simulation Aircraft testing Fault location Feature extraction Gas turbines Pattern classification Sensors Time series Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : An inherent difficulty in sensor-data-driven fault detection is that the detection performance could be drastically reduced under sensor degradation (e.g., drift and noise). Complementary to traditional model-based techniques for fault detection, this paper proposes symbolic dynamic filtering by optimally partitioning the time series data of sensor observation. The objective here is to mask the effects of sensor noise level variation and magnify the system fault signatures. In this regard, the concepts of feature extraction and pattern classification are used for fault detection in aircraft gas turbine engines. The proposed methodology of data-driven fault detection is tested and validated on the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) test-bed developed by NASA for noisy (i.e., increased variance) sensor signals. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Data-driven fault detection in aircraft engines with noisy sensor measurements [texte imprimé] / Sarkar, Soumik, Auteur ; Xin Jin, Auteur ; Ray, Asok, Auteur . - 2011 . - 10 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 8 (Août 2011) . - 10 p.
Mots-clés : Aerospace engines Aerospace simulation Aircraft testing Fault location Feature extraction Gas turbines Pattern classification Sensors Time series Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : An inherent difficulty in sensor-data-driven fault detection is that the detection performance could be drastically reduced under sensor degradation (e.g., drift and noise). Complementary to traditional model-based techniques for fault detection, this paper proposes symbolic dynamic filtering by optimally partitioning the time series data of sensor observation. The objective here is to mask the effects of sensor noise level variation and magnify the system fault signatures. In this regard, the concepts of feature extraction and pattern classification are used for fault detection in aircraft gas turbine engines. The proposed methodology of data-driven fault detection is tested and validated on the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) test-bed developed by NASA for noisy (i.e., increased variance) sensor signals. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...]