Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Muguang Zhang
Documents disponibles écrits par cet auteur
Affiner la rechercheGlobal local structure analysis model and its application for fault detection and identification / Muguang Zhang in Industrial & engineering chemistry research, Vol. 50 N° 11 (Juin 2011)
[article]
in Industrial & engineering chemistry research > Vol. 50 N° 11 (Juin 2011) . - pp. 6837-6848
Titre : Global local structure analysis model and its application for fault detection and identification Type de document : texte imprimé Auteurs : Muguang Zhang, Auteur ; Zhiqiang Ge, Auteur ; Zhihuan Song, Auteur Année de publication : 2011 Article en page(s) : pp. 6837-6848 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Failure detection Modeling Résumé : In this paper, a new fault detection and identification scheme that is based on the global―Iocal structure analysis (GLSA) model is proposed. By exploiting the underlying geometrical manifold and simultaneously keeping the global data information, the GLSA model constructs a dual-objective optimization function for dimension reduction of the process dataset. It combines the advantages of both locality preserving projections (LPP) and principal component analysis (PCA), under a unified framework Meanwhile, GLSA can successfully avoid the singularity problem that may occur in LPP and shares the orthogonal property of the PCA method. In order to balance the two subobjectives (corresponding to global and local structure preservings), a tuning parameter is introduced, and an energy-function-based strategy is proposed to determine the value of the introduced tuning parameter. For the purpose of fault detection, two statistics are constructed, based on the GLSA model Furthermore, the Bayesian inference algorithm is introduced upon the two monitoring statistics for fault identification. Two case studies are provided to demonstrate the efficiencies of the GLSA model. DEWEY : 660 ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=24199901 [article] Global local structure analysis model and its application for fault detection and identification [texte imprimé] / Muguang Zhang, Auteur ; Zhiqiang Ge, Auteur ; Zhihuan Song, Auteur . - 2011 . - pp. 6837-6848.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 50 N° 11 (Juin 2011) . - pp. 6837-6848
Mots-clés : Failure detection Modeling Résumé : In this paper, a new fault detection and identification scheme that is based on the global―Iocal structure analysis (GLSA) model is proposed. By exploiting the underlying geometrical manifold and simultaneously keeping the global data information, the GLSA model constructs a dual-objective optimization function for dimension reduction of the process dataset. It combines the advantages of both locality preserving projections (LPP) and principal component analysis (PCA), under a unified framework Meanwhile, GLSA can successfully avoid the singularity problem that may occur in LPP and shares the orthogonal property of the PCA method. In order to balance the two subobjectives (corresponding to global and local structure preservings), a tuning parameter is introduced, and an energy-function-based strategy is proposed to determine the value of the introduced tuning parameter. For the purpose of fault detection, two statistics are constructed, based on the GLSA model Furthermore, the Bayesian inference algorithm is introduced upon the two monitoring statistics for fault identification. Two case studies are provided to demonstrate the efficiencies of the GLSA model. DEWEY : 660 ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=24199901