Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Gupta, K.
Documents disponibles écrits par cet auteur
Affiner la rechercheInstability and chaos of a flexible rotor all bearing system / Gupta, T. C. in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 8 (Août 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 8 (Août 2011) . - 11 p.
Titre : Instability and chaos of a flexible rotor all bearing system : an investigation on the influence of rotating imbalance and bearing clearance Type de document : texte imprimé Auteurs : Gupta, T. C., Auteur ; Gupta, K., Auteur ; Sehgal, D. K., Auteur Année de publication : 2011 Article en page(s) : 11 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Ball bearings Beams (structures) Lyapunov methods Matrix algebra Rotors Stability Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : n this paper, a horizontal flexible rotor supported on two deep groove ball bearings is theoretically investigated for instability and chaos. The system is biperiodically excited. The two sources of excitation are rotating imbalance and self excitation due to varying compliance effect of ball bearing. A generalized Timoshenko beam finite element (FE) formulation, which can be used for both flexible and rigid rotor systems with equal effectiveness, is developed. The novel scheme proposed in the literature to analyze quasiperiodic response is coupled with the existing nonautonomous shooting method and is thus modified; the shooting method is used to obtain a steady state quasiperiodic solution. The eigenvalues of monodromy matrix provide information about stability and nature of bifurcation of the quasiperiodic solution. The maximum value of the Lyapunov exponent is used for quantitative measure of chaos in the dynamic response. The effect of three parameters, viz., rotating unbalance, bearing clearance, and rotor flexibility, on an unstable and chaotic behavior of a horizontal flexible rotor is studied. Interactive effects between the three parameters are examined in detail in respect of rotor system instability and chaos, and finally the range of parameters is established for the same. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Instability and chaos of a flexible rotor all bearing system : an investigation on the influence of rotating imbalance and bearing clearance [texte imprimé] / Gupta, T. C., Auteur ; Gupta, K., Auteur ; Sehgal, D. K., Auteur . - 2011 . - 11 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 8 (Août 2011) . - 11 p.
Mots-clés : Ball bearings Beams (structures) Lyapunov methods Matrix algebra Rotors Stability Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : n this paper, a horizontal flexible rotor supported on two deep groove ball bearings is theoretically investigated for instability and chaos. The system is biperiodically excited. The two sources of excitation are rotating imbalance and self excitation due to varying compliance effect of ball bearing. A generalized Timoshenko beam finite element (FE) formulation, which can be used for both flexible and rigid rotor systems with equal effectiveness, is developed. The novel scheme proposed in the literature to analyze quasiperiodic response is coupled with the existing nonautonomous shooting method and is thus modified; the shooting method is used to obtain a steady state quasiperiodic solution. The eigenvalues of monodromy matrix provide information about stability and nature of bifurcation of the quasiperiodic solution. The maximum value of the Lyapunov exponent is used for quantitative measure of chaos in the dynamic response. The effect of three parameters, viz., rotating unbalance, bearing clearance, and rotor flexibility, on an unstable and chaotic behavior of a horizontal flexible rotor is studied. Interactive effects between the three parameters are examined in detail in respect of rotor system instability and chaos, and finally the range of parameters is established for the same. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...]