[article]
Titre : |
Approximation of transient 1D conduction in a finite domain using parametric fractional derivatives |
Type de document : |
texte imprimé |
Auteurs : |
Sergio M. Pineda, Auteur ; Gerardo Diaz, Auteur ; Carlos F. M. Coimbra, Auteur |
Année de publication : |
2011 |
Article en page(s) : |
pp. [071301/1-6] |
Note générale : |
Physique |
Langues : |
Anglais (eng) |
Mots-clés : |
Heat conduction Finite domain Fractional derivatives Anamalous diffusion |
Index. décimale : |
536 Chaleur. Thermodynamique |
Résumé : |
A solution to the problem of transient one-dimensional heat conduction in a finite domain is developed through the use of parametric fractional derivatives. The heat diffusion equation is rewritten as anomalous diffusion, and both analytical and numerical solutions for the evolution of the dimensionless temperature profile are obtained. For large slab thicknesses, the results using fractional order derivatives match the semi-infinite domain solution for Fourier numbers, Fo[0,1/16]. For thinner slabs, the fractional order solution matches the results obtained using the integral transform method and Green's function solution for finite domains. A correlation is obtained to display the variation of the fractional order p as a function of dimensionless time (Fo) and slab thickness () at the boundary =0.
|
DEWEY : |
536 |
ISSN : |
0022-1481 |
En ligne : |
http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO00013300 [...] |
in Journal of heat transfer > Vol. 133 N° 7 (Juillet 2011) . - pp. [071301/1-6]
[article] Approximation of transient 1D conduction in a finite domain using parametric fractional derivatives [texte imprimé] / Sergio M. Pineda, Auteur ; Gerardo Diaz, Auteur ; Carlos F. M. Coimbra, Auteur . - 2011 . - pp. [071301/1-6]. Physique Langues : Anglais ( eng) in Journal of heat transfer > Vol. 133 N° 7 (Juillet 2011) . - pp. [071301/1-6]
Mots-clés : |
Heat conduction Finite domain Fractional derivatives Anamalous diffusion |
Index. décimale : |
536 Chaleur. Thermodynamique |
Résumé : |
A solution to the problem of transient one-dimensional heat conduction in a finite domain is developed through the use of parametric fractional derivatives. The heat diffusion equation is rewritten as anomalous diffusion, and both analytical and numerical solutions for the evolution of the dimensionless temperature profile are obtained. For large slab thicknesses, the results using fractional order derivatives match the semi-infinite domain solution for Fourier numbers, Fo[0,1/16]. For thinner slabs, the fractional order solution matches the results obtained using the integral transform method and Green's function solution for finite domains. A correlation is obtained to display the variation of the fractional order p as a function of dimensionless time (Fo) and slab thickness () at the boundary =0.
|
DEWEY : |
536 |
ISSN : |
0022-1481 |
En ligne : |
http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO00013300 [...] |
|