Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Yakinthos, K.
Documents disponibles écrits par cet auteur
Affiner la rechercheCFD modeling and LDA measurements for the air-flow in an aero engine front bearing chamber / Aidarinis, J. in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 8 (Août 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 8 (Août 2011) . - 08 p.
Titre : CFD modeling and LDA measurements for the air-flow in an aero engine front bearing chamber Type de document : texte imprimé Auteurs : Aidarinis, J., Auteur ; Missirlis, D., Auteur ; Yakinthos, K., Auteur Année de publication : 2011 Article en page(s) : 08 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Computational fluid dynamics Laser Doppler anemometry Lubrication Machine bearings Shafts Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The continuous development of aero engines toward lighter but yet more compact designs, without decreasing their efficiency, has led to gradually increasing demands on the lubrication system, such as the bearing chambers of an aero engine. For this reason, it is of particular importance to increase the level of understanding of the flow field inside the bearing chamber in order to optimize its design and improve its performance. The flow field inside a bearing chamber is complicated since there is a strong interaction between the sealing air-flow and the flow of lubrication oil, and both of them are affected by and interacting with the geometry of the chamber and the rotating shaft. In order to understand the flow field development and, as a next step, to optimize the aero engine bearing chamber performance, in relation to the lubrication and heat transfer capabilities, the behavior of this interaction must be investigated. In this work, an investigation of the air-flow field development inside the front bearing chamber of an aero engine is attempted. The front bearing chamber is divided into two separate sections. The flow from the first section passes through the bearing and the bearing holding structure to the second one where the vent and the scavenging system are located. The investigation was performed with the combined use of experimental measurements and computational fluid dynamics (CFD) modeling. The experimental measurements were carried out using a laser Doppler anemometry system in an experimental rig, which consists of a 1:1 model of the front bearing chamber of an aero engine. Tests were carried out at real operating conditions both for the air-flow and for the lubricant oil-flow and for a range of shaft rotating speeds. The CFD modeling was performed using a commercial CFD package. Particularly, the air-flow through the bearing itself was modeled, adopting a porous medium technique, the parameters of which were developed in conjunction with the experiments. A satisfactory quantitative agreement between the experimental measurements and the CFD computations was achieved. At the same time, the effect of the important parameters such as the air and oil mass flow, together with the shaft rotational speed, and the effect of the chamber geometry were identified. The conclusions can be exploited in future attempts in combination with the CFD model developed in order to optimize the efficiency of the lubrication and cooling system. The latter forms the main target of this work, which is the development of a useful engineering tool capable of predicting the flow field inside the aero engine bearing, which can be used subsequently for optimization purposes. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] CFD modeling and LDA measurements for the air-flow in an aero engine front bearing chamber [texte imprimé] / Aidarinis, J., Auteur ; Missirlis, D., Auteur ; Yakinthos, K., Auteur . - 2011 . - 08 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 8 (Août 2011) . - 08 p.
Mots-clés : Computational fluid dynamics Laser Doppler anemometry Lubrication Machine bearings Shafts Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The continuous development of aero engines toward lighter but yet more compact designs, without decreasing their efficiency, has led to gradually increasing demands on the lubrication system, such as the bearing chambers of an aero engine. For this reason, it is of particular importance to increase the level of understanding of the flow field inside the bearing chamber in order to optimize its design and improve its performance. The flow field inside a bearing chamber is complicated since there is a strong interaction between the sealing air-flow and the flow of lubrication oil, and both of them are affected by and interacting with the geometry of the chamber and the rotating shaft. In order to understand the flow field development and, as a next step, to optimize the aero engine bearing chamber performance, in relation to the lubrication and heat transfer capabilities, the behavior of this interaction must be investigated. In this work, an investigation of the air-flow field development inside the front bearing chamber of an aero engine is attempted. The front bearing chamber is divided into two separate sections. The flow from the first section passes through the bearing and the bearing holding structure to the second one where the vent and the scavenging system are located. The investigation was performed with the combined use of experimental measurements and computational fluid dynamics (CFD) modeling. The experimental measurements were carried out using a laser Doppler anemometry system in an experimental rig, which consists of a 1:1 model of the front bearing chamber of an aero engine. Tests were carried out at real operating conditions both for the air-flow and for the lubricant oil-flow and for a range of shaft rotating speeds. The CFD modeling was performed using a commercial CFD package. Particularly, the air-flow through the bearing itself was modeled, adopting a porous medium technique, the parameters of which were developed in conjunction with the experiments. A satisfactory quantitative agreement between the experimental measurements and the CFD computations was achieved. At the same time, the effect of the important parameters such as the air and oil mass flow, together with the shaft rotational speed, and the effect of the chamber geometry were identified. The conclusions can be exploited in future attempts in combination with the CFD model developed in order to optimize the efficiency of the lubrication and cooling system. The latter forms the main target of this work, which is the development of a useful engineering tool capable of predicting the flow field inside the aero engine bearing, which can be used subsequently for optimization purposes. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...]