Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Jani Kangas
Documents disponibles écrits par cet auteur
Affiner la rechercheModified bounded homotopies in the solving of phase stability problems for liquid-liquid phase-splitting calculations / Jani Kangas in Industrial & engineering chemistry research, Vol. 50 N° 11 (Juin 2011)
[article]
in Industrial & engineering chemistry research > Vol. 50 N° 11 (Juin 2011) . - pp. 7003-7018
Titre : Modified bounded homotopies in the solving of phase stability problems for liquid-liquid phase-splitting calculations Type de document : texte imprimé Auteurs : Jani Kangas, Auteur ; Ilkka Malinen, Auteur ; Juha Tanskanen, Auteur Année de publication : 2011 Article en page(s) : pp. 7003-7018 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Liquid phase Phase stability Homotopy Résumé : In this study, the modified bounded homotopies presented by Malinen and Tanskanen (Malinen, L; Tanskanen, J. Modified bounded homotopies to enable a narrow bounding zone. Chem. Eng. Sci. 2008, 63, 3419) are investigated in order to solve phase stability analysis problems in liquid―liquid equilibrium cases for phase-splitting calculations. The tangent-plane distance criterion is used to analyze the phase stability. The emphasis is on approaching the first root on the homotopy path. According to the observations, the bounding of the homotopy path with respect to the problem variables aids in the solving of a phase stability analysis problem. The main shortcomings of the modified bounded Newton, affine, and fixed-point homotopies are the starting point isolas, the existence of unfeasible solutions, and the convergence to only certain roots, respectively. The attraction domain of the global minimum was observed to be the largest with the fixed-point homotopy. Sequential usage of the fixed-point homotopy and starting points near pure components results in a robust algorithm for phase stability analysis and gives feasible initial estimates for the solving of phase splitting. DEWEY : 660 ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=24199919 [article] Modified bounded homotopies in the solving of phase stability problems for liquid-liquid phase-splitting calculations [texte imprimé] / Jani Kangas, Auteur ; Ilkka Malinen, Auteur ; Juha Tanskanen, Auteur . - 2011 . - pp. 7003-7018.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 50 N° 11 (Juin 2011) . - pp. 7003-7018
Mots-clés : Liquid phase Phase stability Homotopy Résumé : In this study, the modified bounded homotopies presented by Malinen and Tanskanen (Malinen, L; Tanskanen, J. Modified bounded homotopies to enable a narrow bounding zone. Chem. Eng. Sci. 2008, 63, 3419) are investigated in order to solve phase stability analysis problems in liquid―liquid equilibrium cases for phase-splitting calculations. The tangent-plane distance criterion is used to analyze the phase stability. The emphasis is on approaching the first root on the homotopy path. According to the observations, the bounding of the homotopy path with respect to the problem variables aids in the solving of a phase stability analysis problem. The main shortcomings of the modified bounded Newton, affine, and fixed-point homotopies are the starting point isolas, the existence of unfeasible solutions, and the convergence to only certain roots, respectively. The attraction domain of the global minimum was observed to be the largest with the fixed-point homotopy. Sequential usage of the fixed-point homotopy and starting points near pure components results in a robust algorithm for phase stability analysis and gives feasible initial estimates for the solving of phase splitting. DEWEY : 660 ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=24199919