Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Charles L. Merkle
Documents disponibles écrits par cet auteur
Affiner la rechercheTransient thermal response of turbulent compressible boundary layers / Hongwei Li in Journal of heat transfer, Vol. 133 N° 8 (Août 2011)
[article]
in Journal of heat transfer > Vol. 133 N° 8 (Août 2011) . - pp. [081701/1-8]
Titre : Transient thermal response of turbulent compressible boundary layers Type de document : texte imprimé Auteurs : Hongwei Li, Auteur ; M. Razi Nalim, Auteur ; Charles L. Merkle, Auteur Année de publication : 2011 Article en page(s) : pp. [081701/1-8] Note générale : Physique Langues : Anglais (eng) Mots-clés : Boundary layer Turbulent Wave rotor Transient Index. décimale : 536 Chaleur. Thermodynamique Résumé : A numerical method is developed with the capability to predict transient thermal boundary layer response under various flow and thermal conditions. The transient thermal boundary layer variation due to a moving compressible turbulent fluid of varying temperature was numerically studied on a two-dimensional semi-infinite flat plate. The compressible Reynolds-averaged boundary layer equations are transformed into incompressible form through the Dorodnitsyn–Howarth transformation and then solved with similarity transformations. Turbulence is modeled using a two-layer eddy viscosity model developed by Cebeci and Smith, and the turbulent Prandtl number formulation originally developed by Kays and Crawford. The governing differential equations are discretized with the Keller-box method. The numerical accuracy is validated through grid-independence studies and comparison with the steady state solution. In turbulent flow as in laminar, the transient heat transfer rates are very different from that obtained from quasi-steady analysis. It is found that the time scale for response of the turbulent boundary layer to far-field temperature changes is 40% less than for laminar flow, and the turbulent local Nusselt number is approximately 4 times that of laminar flow at the final steady state.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO00013300 [...] [article] Transient thermal response of turbulent compressible boundary layers [texte imprimé] / Hongwei Li, Auteur ; M. Razi Nalim, Auteur ; Charles L. Merkle, Auteur . - 2011 . - pp. [081701/1-8].
Physique
Langues : Anglais (eng)
in Journal of heat transfer > Vol. 133 N° 8 (Août 2011) . - pp. [081701/1-8]
Mots-clés : Boundary layer Turbulent Wave rotor Transient Index. décimale : 536 Chaleur. Thermodynamique Résumé : A numerical method is developed with the capability to predict transient thermal boundary layer response under various flow and thermal conditions. The transient thermal boundary layer variation due to a moving compressible turbulent fluid of varying temperature was numerically studied on a two-dimensional semi-infinite flat plate. The compressible Reynolds-averaged boundary layer equations are transformed into incompressible form through the Dorodnitsyn–Howarth transformation and then solved with similarity transformations. Turbulence is modeled using a two-layer eddy viscosity model developed by Cebeci and Smith, and the turbulent Prandtl number formulation originally developed by Kays and Crawford. The governing differential equations are discretized with the Keller-box method. The numerical accuracy is validated through grid-independence studies and comparison with the steady state solution. In turbulent flow as in laminar, the transient heat transfer rates are very different from that obtained from quasi-steady analysis. It is found that the time scale for response of the turbulent boundary layer to far-field temperature changes is 40% less than for laminar flow, and the turbulent local Nusselt number is approximately 4 times that of laminar flow at the final steady state.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO00013300 [...]