Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Shahabeddin Keshavarz Mohammadian
Documents disponibles écrits par cet auteur
Affiner la rechercheThermal and hydraulic performance of counterflow microchannel heat exchangers with and without nanofluids / Hamid Reza Seyf in Journal of heat transfer, Vol. 133 N° 8 (Août 2011)
[article]
in Journal of heat transfer > Vol. 133 N° 8 (Août 2011) . - pp. [081801/1-9]
Titre : Thermal and hydraulic performance of counterflow microchannel heat exchangers with and without nanofluids Type de document : texte imprimé Auteurs : Hamid Reza Seyf, Auteur ; Shahabeddin Keshavarz Mohammadian, Auteur Année de publication : 2011 Article en page(s) : pp. [081801/1-9] Note générale : Physique Langues : Anglais (eng) Mots-clés : Numerical simulation Nanofluid Brownian motion Effectiveness Thermal performance Index. décimale : 536 Chaleur. Thermodynamique Résumé : This paper analyzes the thermal and hydraulic performance of a counterflow microchannel heat exchanger (CFMCHE) with and without nanofluid as working fluid. A 3D conjugate heat transfer simulation is carried out using a finite volume approach to evaluate the effects of inlet Reynolds number, Brownian motion, and volume fraction of nanoparticles on the pumping power, effectiveness, and performance index of CFMCHE. The accuracy of the code has been verified by comparing the results with those available in the literature. A single phase approach is used for the nanofluid modeling. The base fluid used in the analyses as a basis for comparison was pure water. Two types of nanofluids, namely, water-Al2O3 with a mean diameter of 47 nm and water-CuO with a mean diameter of 29 nm, each one with three different volume fractions, are utilized. In addition, two temperature dependent models for the thermal conductivity and viscosity of nanofluids that account for the fundamental role of Brownian motion are used. Calculated results demonstrate that the effectiveness and performance index of CFMCHE decrease with increasing Reynolds number. Moreover, it is observed that the relative enhancements in the pumping power become more prominent for higher values of Reynolds numbers. It was also found that the performance index and pumping power are not sensitive to volume fraction at higher and lower Reynolds numbers, respectively.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO00013300 [...] [article] Thermal and hydraulic performance of counterflow microchannel heat exchangers with and without nanofluids [texte imprimé] / Hamid Reza Seyf, Auteur ; Shahabeddin Keshavarz Mohammadian, Auteur . - 2011 . - pp. [081801/1-9].
Physique
Langues : Anglais (eng)
in Journal of heat transfer > Vol. 133 N° 8 (Août 2011) . - pp. [081801/1-9]
Mots-clés : Numerical simulation Nanofluid Brownian motion Effectiveness Thermal performance Index. décimale : 536 Chaleur. Thermodynamique Résumé : This paper analyzes the thermal and hydraulic performance of a counterflow microchannel heat exchanger (CFMCHE) with and without nanofluid as working fluid. A 3D conjugate heat transfer simulation is carried out using a finite volume approach to evaluate the effects of inlet Reynolds number, Brownian motion, and volume fraction of nanoparticles on the pumping power, effectiveness, and performance index of CFMCHE. The accuracy of the code has been verified by comparing the results with those available in the literature. A single phase approach is used for the nanofluid modeling. The base fluid used in the analyses as a basis for comparison was pure water. Two types of nanofluids, namely, water-Al2O3 with a mean diameter of 47 nm and water-CuO with a mean diameter of 29 nm, each one with three different volume fractions, are utilized. In addition, two temperature dependent models for the thermal conductivity and viscosity of nanofluids that account for the fundamental role of Brownian motion are used. Calculated results demonstrate that the effectiveness and performance index of CFMCHE decrease with increasing Reynolds number. Moreover, it is observed that the relative enhancements in the pumping power become more prominent for higher values of Reynolds numbers. It was also found that the performance index and pumping power are not sensitive to volume fraction at higher and lower Reynolds numbers, respectively.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO00013300 [...]