Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Gustavo J. Parra-Montesinos
Documents disponibles écrits par cet auteur
Affiner la rechercheShear strength and drift capacity of fiber-reinforced concrete slab-column connections subjected to biaxial displacements / Min-Yuan Cheng in Journal of structural engineering, Vol. 136 N° 9 (Septembre 2010)
[article]
in Journal of structural engineering > Vol. 136 N° 9 (Septembre 2010) . - pp. 1078-1088
Titre : Shear strength and drift capacity of fiber-reinforced concrete slab-column connections subjected to biaxial displacements Type de document : texte imprimé Auteurs : Min-Yuan Cheng, Auteur ; Gustavo J. Parra-Montesinos, Auteur ; Carol K. Shield, Auteur Année de publication : 2011 Article en page(s) : pp. 1078-1088 Note générale : Génie Civil Langues : Anglais (eng) Mots-clés : Punching shear Drift Ductility Shear studs Flat plate Steel fibers Index. décimale : 624 Constructions du génie civil et du bâtiment. Infrastructures. Ouvrages en terres. Fondations. Tunnels. Ponts et charpentes Résumé : Results from the tests of three large-scale slab-column subassemblies subjected to combined gravity load and biaxial lateral displacements are presented. The main purpose of the experimental program was to investigate the use of randomly oriented steel fiber reinforcement as a means to increase connection punching shear strength and deformation capacity. The connection of Specimen SB1 was reinforced with regular strength (1,100 MPa) fibers, 30 mm long and 0.55 mm in diameter, while the connection of Specimen SB2 featured high-strength (2,300 MPa) fibers, 30 mm long and 0.38 mm in diameter. Both types of fibers were targeted at a 1.5% volume fraction. The connection of Specimen SB3, on the other hand, was reinforced with shear studs, designed according to the 2008 American Concrete Institute Building Code. All three connections were subjected to a gravity shear ratio of approximately 1/2 during application of biaxial lateral displacements. The use of fiber reinforcement in the connection region resulted in superior deformation capacity compared to the connection with shear stud reinforcement. Average connection rotation, just before punching, was approximately 0.04 rad in the two fiber-reinforced concrete connections. On the other hand, shear stud reinforcement seems to have had little effect on connection ductility. The connection with shear stud reinforcement failed at an average rotation of 0.023 rad. Inspection of this connection after the test indicated a breakout failure of the concrete engaged by the second line of studs accompanied by severe bending of the bottom steel rail.
DEWEY : 624.17 ISSN : 0733-9445 En ligne : http://ascelibrary.org/sto/resource/1/jsendh/v136/i9/p1078_s1?isAuthorized=no [article] Shear strength and drift capacity of fiber-reinforced concrete slab-column connections subjected to biaxial displacements [texte imprimé] / Min-Yuan Cheng, Auteur ; Gustavo J. Parra-Montesinos, Auteur ; Carol K. Shield, Auteur . - 2011 . - pp. 1078-1088.
Génie Civil
Langues : Anglais (eng)
in Journal of structural engineering > Vol. 136 N° 9 (Septembre 2010) . - pp. 1078-1088
Mots-clés : Punching shear Drift Ductility Shear studs Flat plate Steel fibers Index. décimale : 624 Constructions du génie civil et du bâtiment. Infrastructures. Ouvrages en terres. Fondations. Tunnels. Ponts et charpentes Résumé : Results from the tests of three large-scale slab-column subassemblies subjected to combined gravity load and biaxial lateral displacements are presented. The main purpose of the experimental program was to investigate the use of randomly oriented steel fiber reinforcement as a means to increase connection punching shear strength and deformation capacity. The connection of Specimen SB1 was reinforced with regular strength (1,100 MPa) fibers, 30 mm long and 0.55 mm in diameter, while the connection of Specimen SB2 featured high-strength (2,300 MPa) fibers, 30 mm long and 0.38 mm in diameter. Both types of fibers were targeted at a 1.5% volume fraction. The connection of Specimen SB3, on the other hand, was reinforced with shear studs, designed according to the 2008 American Concrete Institute Building Code. All three connections were subjected to a gravity shear ratio of approximately 1/2 during application of biaxial lateral displacements. The use of fiber reinforcement in the connection region resulted in superior deformation capacity compared to the connection with shear stud reinforcement. Average connection rotation, just before punching, was approximately 0.04 rad in the two fiber-reinforced concrete connections. On the other hand, shear stud reinforcement seems to have had little effect on connection ductility. The connection with shear stud reinforcement failed at an average rotation of 0.023 rad. Inspection of this connection after the test indicated a breakout failure of the concrete engaged by the second line of studs accompanied by severe bending of the bottom steel rail.
DEWEY : 624.17 ISSN : 0733-9445 En ligne : http://ascelibrary.org/sto/resource/1/jsendh/v136/i9/p1078_s1?isAuthorized=no Shear strength model for steel fiber reinforced concrete beams without stirrup reinforcement / Hai H. Dinh in Journal of structural engineering, Vol. 137 N° 10 (Octobre 2011)
[article]
in Journal of structural engineering > Vol. 137 N° 10 (Octobre 2011) . - pp. 1039-1051
Titre : Shear strength model for steel fiber reinforced concrete beams without stirrup reinforcement Type de document : texte imprimé Auteurs : Hai H. Dinh, Auteur ; Gustavo J. Parra-Montesinos, Auteur ; James K. Wight, Auteur Année de publication : 2012 Article en page(s) : pp. 1039-1051 Note générale : Génie Civil Langues : Anglais (eng) Mots-clés : Fiber reinforced concrete Steel fibers Shear Diagonal tension Index. décimale : 624 Constructions du génie civil et du bâtiment. Infrastructures. Ouvrages en terres. Fondations. Tunnels. Ponts et charpentes Résumé : A simple model is presented to estimate the shear strength of steel fiber reinforced concrete (FRC) beams without stirrup reinforcement. The model was developed on the basis of observations from tests of 27 large-scale beams under monotonically increased concentrated loading. Three types of hooked steel fibers were evaluated in volume fractions ranging between 0.75% (59 kg/m3 or 100 lb/yd3) and 1.5% (118 kg/m3 or 200 lb/yd3). All but one beam failed in shear either prior to or after flexural yielding. In the proposed model, shear in steel FRC beams is assumed to be resisted by shear stress carried in the compression zone and tension transferred across diagonal cracks by steel fibers. Shear carried in the compression zone is estimated by using the failure criterion for concrete subjected to combined compression and shear proposed by Bresler and Pister. The contribution from fiber reinforcement to shear strength, on the other hand, is tied to material performance obtained through standard ASTM 1609 four-point bending tests. Comparison of predicted versus experimental shear strengths for a large number of FRC beams tested in this and other investigations indicates that the proposed model is capable of predicting the shear strength of steel FRC beams with reasonable accuracy; mean and standard deviation values are 0.79 and 0.12, respectively.
DEWEY : 624.17 ISSN : 0733-9445 En ligne : http://ascelibrary.org/sto/resource/1/jsendh/v137/i10/p1039_s1?isAuthorized=no [article] Shear strength model for steel fiber reinforced concrete beams without stirrup reinforcement [texte imprimé] / Hai H. Dinh, Auteur ; Gustavo J. Parra-Montesinos, Auteur ; James K. Wight, Auteur . - 2012 . - pp. 1039-1051.
Génie Civil
Langues : Anglais (eng)
in Journal of structural engineering > Vol. 137 N° 10 (Octobre 2011) . - pp. 1039-1051
Mots-clés : Fiber reinforced concrete Steel fibers Shear Diagonal tension Index. décimale : 624 Constructions du génie civil et du bâtiment. Infrastructures. Ouvrages en terres. Fondations. Tunnels. Ponts et charpentes Résumé : A simple model is presented to estimate the shear strength of steel fiber reinforced concrete (FRC) beams without stirrup reinforcement. The model was developed on the basis of observations from tests of 27 large-scale beams under monotonically increased concentrated loading. Three types of hooked steel fibers were evaluated in volume fractions ranging between 0.75% (59 kg/m3 or 100 lb/yd3) and 1.5% (118 kg/m3 or 200 lb/yd3). All but one beam failed in shear either prior to or after flexural yielding. In the proposed model, shear in steel FRC beams is assumed to be resisted by shear stress carried in the compression zone and tension transferred across diagonal cracks by steel fibers. Shear carried in the compression zone is estimated by using the failure criterion for concrete subjected to combined compression and shear proposed by Bresler and Pister. The contribution from fiber reinforcement to shear strength, on the other hand, is tied to material performance obtained through standard ASTM 1609 four-point bending tests. Comparison of predicted versus experimental shear strengths for a large number of FRC beams tested in this and other investigations indicates that the proposed model is capable of predicting the shear strength of steel FRC beams with reasonable accuracy; mean and standard deviation values are 0.79 and 0.12, respectively.
DEWEY : 624.17 ISSN : 0733-9445 En ligne : http://ascelibrary.org/sto/resource/1/jsendh/v137/i10/p1039_s1?isAuthorized=no