Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Jean-Charles de Hemptinne
Documents disponibles écrits par cet auteur
Affiner la rechercheMeasurements of liquid−liquid equilibria for a methanol + glycerol + methyl oleate system and prediction using group contribution statistical associating fluid theory / A. Barreau in Industrial & engineering chemistry research, Vol. 49 N° 12 (Juin 2010)
[article]
in Industrial & engineering chemistry research > Vol. 49 N° 12 (Juin 2010) . - pp. 5800–5807
Titre : Measurements of liquid−liquid equilibria for a methanol + glycerol + methyl oleate system and prediction using group contribution statistical associating fluid theory Type de document : texte imprimé Auteurs : A. Barreau, Auteur ; I. Brunella, Auteur ; Jean-Charles de Hemptinne, Auteur Année de publication : 2010 Article en page(s) : pp. 5800–5807 Note générale : Chemical engineering Langues : Anglais (eng) Mots-clés : Ternary system Vapor−liquid−liquid dataFatty acid methyl ester Glycerol Methanol ternary system Résumé : A good understanding and prediction of the phase equilibrium of the fatty acid methyl ester (FAME) + glycerol + methanol ternary system is needed to design and optimize the separation unit of the biodiesel production process. In this work, new experimental vapor−liquid−liquid data on the ternary system have been measured at temperatures between 333.15 and 473.15 K. In addition, new data have been gathered on the methanol + glycerol [vapor−liquid equilibrium (VLE)] and methanol + methyl oleate (VLE and liquid−liquid equilibrium) binary systems. A group contribution method combined with a statistical associating fluid theory equation of state (GC-PPC-SAFT) proposed earlier by our group (Tamouza, S., Passarello, J.-P., Tobaly, P., and de Hemptinne, J.-C.Group contribution method with SAFT EOS applied to vapor liquid equilibria of various hydrocarbons series. Fluid Phase Equilib. 2004, 222−223, 67−76) and recently extended to predict VLE of heavy esters and their mixtures (Nguyen Huynh, D., Falaix, A., Passarello, J.-P., Tobaly, P., and de Hemptinne, J.-C.Predicting VLE of heavy esters and their mixtures using GC-SAFT. Fluid Phase Equilib. 2008, 264, 184−200) is here applied to model vapor liquid−liquid equilibria of methanol + glycerol + methyl oleate. The SAFT parameters for the glycerol pure component have been regressed using two association schemes (4C and 3X2B). The dispersive binary interaction parameters kij have been regressed on the binary systems. The group contribution scheme was used for predicting the ester properties. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie901379x [article] Measurements of liquid−liquid equilibria for a methanol + glycerol + methyl oleate system and prediction using group contribution statistical associating fluid theory [texte imprimé] / A. Barreau, Auteur ; I. Brunella, Auteur ; Jean-Charles de Hemptinne, Auteur . - 2010 . - pp. 5800–5807.
Chemical engineering
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 49 N° 12 (Juin 2010) . - pp. 5800–5807
Mots-clés : Ternary system Vapor−liquid−liquid dataFatty acid methyl ester Glycerol Methanol ternary system Résumé : A good understanding and prediction of the phase equilibrium of the fatty acid methyl ester (FAME) + glycerol + methanol ternary system is needed to design and optimize the separation unit of the biodiesel production process. In this work, new experimental vapor−liquid−liquid data on the ternary system have been measured at temperatures between 333.15 and 473.15 K. In addition, new data have been gathered on the methanol + glycerol [vapor−liquid equilibrium (VLE)] and methanol + methyl oleate (VLE and liquid−liquid equilibrium) binary systems. A group contribution method combined with a statistical associating fluid theory equation of state (GC-PPC-SAFT) proposed earlier by our group (Tamouza, S., Passarello, J.-P., Tobaly, P., and de Hemptinne, J.-C.Group contribution method with SAFT EOS applied to vapor liquid equilibria of various hydrocarbons series. Fluid Phase Equilib. 2004, 222−223, 67−76) and recently extended to predict VLE of heavy esters and their mixtures (Nguyen Huynh, D., Falaix, A., Passarello, J.-P., Tobaly, P., and de Hemptinne, J.-C.Predicting VLE of heavy esters and their mixtures using GC-SAFT. Fluid Phase Equilib. 2008, 264, 184−200) is here applied to model vapor liquid−liquid equilibria of methanol + glycerol + methyl oleate. The SAFT parameters for the glycerol pure component have been regressed using two association schemes (4C and 3X2B). The dispersive binary interaction parameters kij have been regressed on the binary systems. The group contribution scheme was used for predicting the ester properties. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie901379x Modeling liquid–liquid and liquid–vapor equilibria of binary systems containing water with an alkane, an aromatic hydrocarbon, an alcohol or a gas (Methane, Ethane, CO2 or H2S), using group contribution polar perturbed-chain statistical associating fluid theory / Dong Nguyen-Huynh in Industrial & engineering chemistry research, Vol. 50 N° 12 (Juin 2011)
[article]
in Industrial & engineering chemistry research > Vol. 50 N° 12 (Juin 2011) . - pp. 7467-7483
Titre : Modeling liquid–liquid and liquid–vapor equilibria of binary systems containing water with an alkane, an aromatic hydrocarbon, an alcohol or a gas (Methane, Ethane, CO2 or H2S), using group contribution polar perturbed-chain statistical associating fluid theory Type de document : texte imprimé Auteurs : Dong Nguyen-Huynh, Auteur ; Jean-Charles de Hemptinne, Auteur ; Rafael Lugo, Auteur Année de publication : 2011 Article en page(s) : pp. 7467-7483 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Multiphase equilibrium Hydrogen sulfides Carbon dioxide Binary system Liquid liquid vapor equilibrium Modeling Résumé : The present paper proposes to use the group contribution (GC) polar perturbed-chain-statistical associating fluid theory (GC-PPC-SAFT) equation of state (EoS), that has already been used with success on various organic mixtures, and extend it to model simultaneously the liquid―liquid equilibrium (LLE) and vapor-liquid equilibrium (VLE) of hydrocarbons + water systems, in wide ranges of pressure and temperature. Mixtures of water with aliphatics, aromatics, alcohols, carbon dioxide, and hydrogen sulfide have been investigated. Pure water is assumed associative (according to the 4C association scheme) and dipolar; the aromatic compounds are quadrupolar. Alcohols are autoassociative with a 3B association scheme. A cross-association between water and alcohols or H2S is taken into account. Cross association between water and other polar molecules (CO2 or aromatic molecules) was also taken into account explicitly. Only one set of cross association parameters εcross/k and κcross values were used for all the water + aromatic mixtures considered here. εcross/k was adjusted on experimental data, whereas κcross is set to the value found for pure water. For each system, the same binary interaction parameter kij was used for simultaneous modeling LLE and VLE. This parameter was correlated to pseudo-ionization energy parameters for pure compounds through London's dispersion force theory, and reused from previous works [Nguyen-Huynh, D.; Passarello, J.P.; Tobaly, P.; de Hemptinne, J.C. Ind. Eng. Chem. Res., 2008, 47, 8847―8858]. For pure water, the average deviation on vapor pressure is 3.36% and that on volume 4.74%. The water solubility in the organic phase is very well reproduced (AAD = 7.5% for water + n-hexane), but most importantly the hydrocarbon solubility in water shows an overall AAD of 30% which is very small considering the very low solubility values. Trends are similar for all families as tabulated in the manuscript and detailed in the Supporting Information. DEWEY : 660 ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=24239063 [article] Modeling liquid–liquid and liquid–vapor equilibria of binary systems containing water with an alkane, an aromatic hydrocarbon, an alcohol or a gas (Methane, Ethane, CO2 or H2S), using group contribution polar perturbed-chain statistical associating fluid theory [texte imprimé] / Dong Nguyen-Huynh, Auteur ; Jean-Charles de Hemptinne, Auteur ; Rafael Lugo, Auteur . - 2011 . - pp. 7467-7483.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 50 N° 12 (Juin 2011) . - pp. 7467-7483
Mots-clés : Multiphase equilibrium Hydrogen sulfides Carbon dioxide Binary system Liquid liquid vapor equilibrium Modeling Résumé : The present paper proposes to use the group contribution (GC) polar perturbed-chain-statistical associating fluid theory (GC-PPC-SAFT) equation of state (EoS), that has already been used with success on various organic mixtures, and extend it to model simultaneously the liquid―liquid equilibrium (LLE) and vapor-liquid equilibrium (VLE) of hydrocarbons + water systems, in wide ranges of pressure and temperature. Mixtures of water with aliphatics, aromatics, alcohols, carbon dioxide, and hydrogen sulfide have been investigated. Pure water is assumed associative (according to the 4C association scheme) and dipolar; the aromatic compounds are quadrupolar. Alcohols are autoassociative with a 3B association scheme. A cross-association between water and alcohols or H2S is taken into account. Cross association between water and other polar molecules (CO2 or aromatic molecules) was also taken into account explicitly. Only one set of cross association parameters εcross/k and κcross values were used for all the water + aromatic mixtures considered here. εcross/k was adjusted on experimental data, whereas κcross is set to the value found for pure water. For each system, the same binary interaction parameter kij was used for simultaneous modeling LLE and VLE. This parameter was correlated to pseudo-ionization energy parameters for pure compounds through London's dispersion force theory, and reused from previous works [Nguyen-Huynh, D.; Passarello, J.P.; Tobaly, P.; de Hemptinne, J.C. Ind. Eng. Chem. Res., 2008, 47, 8847―8858]. For pure water, the average deviation on vapor pressure is 3.36% and that on volume 4.74%. The water solubility in the organic phase is very well reproduced (AAD = 7.5% for water + n-hexane), but most importantly the hydrocarbon solubility in water shows an overall AAD of 30% which is very small considering the very low solubility values. Trends are similar for all families as tabulated in the manuscript and detailed in the Supporting Information. DEWEY : 660 ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=24239063