Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Hasmatuchi, Vlad
Documents disponibles écrits par cet auteur
Affiner la rechercheAnalysis and prevention of vortex breakdown in the simplified discharge cone of a Francis turbine / Romeo Susan-Resiga in Transactions of the ASME . Journal of fluids engineering, Vol. 132 N° 5 (Mai 2010)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 132 N° 5 (Mai 2010) . - 15 p.
Titre : Analysis and prevention of vortex breakdown in the simplified discharge cone of a Francis turbine Type de document : texte imprimé Auteurs : Romeo Susan-Resiga, Auteur ; Sebastian Muntean, Auteur ; Hasmatuchi, Vlad, Auteur Année de publication : 2010 Article en page(s) : 15 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : pressure; flow (dynamics); turbulence; kinetic energy; stress; diffusers; turbines; vortices; electrical discharge; swirling flow; Francis turbines Résumé : We perform a numerical analysis of the decelerated swirling flow into the discharge cone of a model Francis turbine operated at variable discharge and constant head, using an axisymmetric turbulent swirling flow model and a corresponding simplified computational domain. Inlet boundary conditions correspond to velocity and turbulent kinetic energy profiles measured downstream the Francis runner. Our numerical results are validated against experimental data on a survey section further downstream in the cone, showing that the Reynolds stress turbulence model with a quadratic pressure-strain term correctly captures the flow field. It is shown that the diffuser performance quickly deteriorates as the turbine discharge decreases, due to the occurrence and development of vortex breakdown, with a central quasistagnant region. We investigate a novel flow control technique, which uses a water jet injected from the runner crown tip along the axis. It is shown that the jet discharge can be optimized for minimum overall losses, while the vortex breakdown is eliminated. This flow control method is useful for mitigating the Francis turbine flow instabilities when operating at partial discharge. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27418 [...] [article] Analysis and prevention of vortex breakdown in the simplified discharge cone of a Francis turbine [texte imprimé] / Romeo Susan-Resiga, Auteur ; Sebastian Muntean, Auteur ; Hasmatuchi, Vlad, Auteur . - 2010 . - 15 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 132 N° 5 (Mai 2010) . - 15 p.
Mots-clés : pressure; flow (dynamics); turbulence; kinetic energy; stress; diffusers; turbines; vortices; electrical discharge; swirling flow; Francis turbines Résumé : We perform a numerical analysis of the decelerated swirling flow into the discharge cone of a model Francis turbine operated at variable discharge and constant head, using an axisymmetric turbulent swirling flow model and a corresponding simplified computational domain. Inlet boundary conditions correspond to velocity and turbulent kinetic energy profiles measured downstream the Francis runner. Our numerical results are validated against experimental data on a survey section further downstream in the cone, showing that the Reynolds stress turbulence model with a quadratic pressure-strain term correctly captures the flow field. It is shown that the diffuser performance quickly deteriorates as the turbine discharge decreases, due to the occurrence and development of vortex breakdown, with a central quasistagnant region. We investigate a novel flow control technique, which uses a water jet injected from the runner crown tip along the axis. It is shown that the jet discharge can be optimized for minimum overall losses, while the vortex breakdown is eliminated. This flow control method is useful for mitigating the Francis turbine flow instabilities when operating at partial discharge. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27418 [...] Experimental evidence of rotating stall in a pump-turbine at off-design conditions in generating mode / Hasmatuchi, Vlad in Transactions of the ASME . Journal of fluids engineering, Vol. 133 N° 5 (Mai 2011)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 133 N° 5 (Mai 2011) . - 08 p.
Titre : Experimental evidence of rotating stall in a pump-turbine at off-design conditions in generating mode Type de document : texte imprimé Auteurs : Hasmatuchi, Vlad, Auteur ; Farhat, Mohamed, Auteur ; Roth, Steven, Auteur Année de publication : 2011 Article en page(s) : 08 p. Note générale : Fluids engineering Langues : Anglais (eng) Mots-clés : Blades Bubbles Channel flow Flow separation Flow visualisation Image reconstruction Pattern formation Pumps Spectral analysis Stators Turbines Vortices Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : An experimental investigation of the rotating stall in reduced scale model of a low specific speed radial pump-turbine at runaway and turbine brake conditions in generating mode is achieved. Measurements of wall pressure in the stator are performed along with high-speed flow visualizations in the vaneless gap with the help of air bubbles injection. When starting from the best efficiency point (BEP) and increasing the impeller speed, a significant increase of the pressure fluctuations is observed mainly in the wicket gates channels. The spectral analysis shows a rise of a low frequency component (about 70% of the impeller rotational frequency) at runaway, which further increases as the zero discharge condition is approached. Analysis of the instantaneous pressure peripheral distribution in the vaneless gap reveals one stall cell rotating with the impeller at sub-synchronous speed. High-speed movies reveal a quite uniform flow pattern in the guide vanes channels at the normal operating range, whereas at runaway the flow is highly disturbed by the rotating stall passage. The situation is even more critical at very low positive discharge, where backflow and vortices in the guide vanes channels develop during the stall cell passage. A specific image processing technique is applied to reconstruct the rotating stall evolution in the entire guide vanes circumference for a low positive discharge operating point. The findings of this study suggest that one stall cell rotates with the impeller at sub-synchronous velocity in the vaneless gap between the impeller and the guide vanes. It is the result of rotating flow separations developed in several consecutive impeller channels which lead to their blockage. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA400013 [...] [article] Experimental evidence of rotating stall in a pump-turbine at off-design conditions in generating mode [texte imprimé] / Hasmatuchi, Vlad, Auteur ; Farhat, Mohamed, Auteur ; Roth, Steven, Auteur . - 2011 . - 08 p.
Fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 133 N° 5 (Mai 2011) . - 08 p.
Mots-clés : Blades Bubbles Channel flow Flow separation Flow visualisation Image reconstruction Pattern formation Pumps Spectral analysis Stators Turbines Vortices Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : An experimental investigation of the rotating stall in reduced scale model of a low specific speed radial pump-turbine at runaway and turbine brake conditions in generating mode is achieved. Measurements of wall pressure in the stator are performed along with high-speed flow visualizations in the vaneless gap with the help of air bubbles injection. When starting from the best efficiency point (BEP) and increasing the impeller speed, a significant increase of the pressure fluctuations is observed mainly in the wicket gates channels. The spectral analysis shows a rise of a low frequency component (about 70% of the impeller rotational frequency) at runaway, which further increases as the zero discharge condition is approached. Analysis of the instantaneous pressure peripheral distribution in the vaneless gap reveals one stall cell rotating with the impeller at sub-synchronous speed. High-speed movies reveal a quite uniform flow pattern in the guide vanes channels at the normal operating range, whereas at runaway the flow is highly disturbed by the rotating stall passage. The situation is even more critical at very low positive discharge, where backflow and vortices in the guide vanes channels develop during the stall cell passage. A specific image processing technique is applied to reconstruct the rotating stall evolution in the entire guide vanes circumference for a low positive discharge operating point. The findings of this study suggest that one stall cell rotates with the impeller at sub-synchronous velocity in the vaneless gap between the impeller and the guide vanes. It is the result of rotating flow separations developed in several consecutive impeller channels which lead to their blockage. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA400013 [...]