Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Ali R. Tahavvor
Documents disponibles écrits par cet auteur
Affiner la recherchePrediction of frost deposition on a horizontal circular cylinder under natural convection using artificial neural networks / Ali R. Tahavvor in International journal of refrigeration, Vol. 34 N° 2 (Mars 2011)
[article]
in International journal of refrigeration > Vol. 34 N° 2 (Mars 2011) . - pp. 560-566
Titre : Prediction of frost deposition on a horizontal circular cylinder under natural convection using artificial neural networks Titre original : Prévision de la déposition de givre sur un cylindre horizontal sous convection naturelle à l'aide de réseaux neuronaux Type de document : texte imprimé Auteurs : Ali R. Tahavvor, Auteur ; Mahmood Yaghoubi, Auteur Année de publication : 2011 Article en page(s) : pp. 560-566 Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Neural network Frost Free convection Horizontal cylinder Index. décimale : 621.5 Energie pneumatique. Machinerie et outils. Réfrigération Résumé : In the present work Artificial Neural Network is used to predict frost thickness and density around a cooled horizontal circular cylinder having constant surface temperature under natural convection for different ambient conditions. The database for ANN generated from the experimental measurements. In the present work a multilayer perceptron network is used and it is found that the back-propagation algorithm with Levenberg–Marquardt learning rule is the best choice to estimate frost growth due to accurate and faster training procedure. Experimental measurements are used for training and testing the ANN approach and comparison is performed among the soft programming ANN and experimental measurements. It is observed that ANN soft programming code can be used more efficiently to determine frost thickness and density around a cold horizontal cylinder. Based on the developed ANN wide range of frost formation over various cylinder diameters are determined and presented for various conditions. DEWEY : 621.5 ISSN : 0140-7007 En ligne : http://www.sciencedirect.com/science/article/pii/S0140700710002379 [article] Prediction of frost deposition on a horizontal circular cylinder under natural convection using artificial neural networks = Prévision de la déposition de givre sur un cylindre horizontal sous convection naturelle à l'aide de réseaux neuronaux [texte imprimé] / Ali R. Tahavvor, Auteur ; Mahmood Yaghoubi, Auteur . - 2011 . - pp. 560-566.
Génie Mécanique
Langues : Anglais (eng)
in International journal of refrigeration > Vol. 34 N° 2 (Mars 2011) . - pp. 560-566
Mots-clés : Neural network Frost Free convection Horizontal cylinder Index. décimale : 621.5 Energie pneumatique. Machinerie et outils. Réfrigération Résumé : In the present work Artificial Neural Network is used to predict frost thickness and density around a cooled horizontal circular cylinder having constant surface temperature under natural convection for different ambient conditions. The database for ANN generated from the experimental measurements. In the present work a multilayer perceptron network is used and it is found that the back-propagation algorithm with Levenberg–Marquardt learning rule is the best choice to estimate frost growth due to accurate and faster training procedure. Experimental measurements are used for training and testing the ANN approach and comparison is performed among the soft programming ANN and experimental measurements. It is observed that ANN soft programming code can be used more efficiently to determine frost thickness and density around a cold horizontal cylinder. Based on the developed ANN wide range of frost formation over various cylinder diameters are determined and presented for various conditions. DEWEY : 621.5 ISSN : 0140-7007 En ligne : http://www.sciencedirect.com/science/article/pii/S0140700710002379