Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur P. B. Shing
Documents disponibles écrits par cet auteur
Affiner la rechercheFinite-element modeling of nonlinear behavior of masonry-infilled RC frames / Andreas Stavridis in Journal of structural engineering, Vol. 136 N° 3 (Mars 2010)
[article]
in Journal of structural engineering > Vol. 136 N° 3 (Mars 2010) . - pp. 285-296
Titre : Finite-element modeling of nonlinear behavior of masonry-infilled RC frames Type de document : texte imprimé Auteurs : Andreas Stavridis, Auteur ; P. B. Shing, Auteur Année de publication : 2011 Article en page(s) : pp. 285-296 Note générale : Génie Civil Langues : Anglais (eng) Mots-clés : Masonry Reinforced concrete Finite-element method Shear failure Seismic assessment Earthquake performance Smeared-crack models Discrete crack models Cohesive interface models Infill Index. décimale : 624 Constructions du génie civil et du bâtiment. Infrastructures. Ouvrages en terres. Fondations. Tunnels. Ponts et charpentes Résumé : The evaluation of the seismic performance of masonry-infilled reinforced concrete (RC) frames has been a major challenge for structural engineers. This paper addresses pertinent issues on the development and calibration of nonlinear finite-element models for assessing the seismic performance of these structures. The modeling scheme considered here combines the smeared and discrete crack approaches to capture the different failure modes of infilled frames, including the mixed-mode fracture of mortar joints and the shear failure of RC members. A systematic approach is presented here to calibrate the material parameters, and the accuracy of the nonlinear finite-element models has been evaluated with experimental data. The comparison of the numerical and experimental results indicates that the models can successfully capture the highly nonlinear behavior of the physical specimens and accurately predict their strength and failure mechanisms. The validated models have been used to assess the sensitivity of the numerical results to the modeling parameters and to identify the critical material parameters through a parametric study.
DEWEY : 624.17 ISSN : 0733-9445 En ligne : http://ascelibrary.org/sto/resource/1/jsendh/v136/i3/p285_s1?isAuthorized=no [article] Finite-element modeling of nonlinear behavior of masonry-infilled RC frames [texte imprimé] / Andreas Stavridis, Auteur ; P. B. Shing, Auteur . - 2011 . - pp. 285-296.
Génie Civil
Langues : Anglais (eng)
in Journal of structural engineering > Vol. 136 N° 3 (Mars 2010) . - pp. 285-296
Mots-clés : Masonry Reinforced concrete Finite-element method Shear failure Seismic assessment Earthquake performance Smeared-crack models Discrete crack models Cohesive interface models Infill Index. décimale : 624 Constructions du génie civil et du bâtiment. Infrastructures. Ouvrages en terres. Fondations. Tunnels. Ponts et charpentes Résumé : The evaluation of the seismic performance of masonry-infilled reinforced concrete (RC) frames has been a major challenge for structural engineers. This paper addresses pertinent issues on the development and calibration of nonlinear finite-element models for assessing the seismic performance of these structures. The modeling scheme considered here combines the smeared and discrete crack approaches to capture the different failure modes of infilled frames, including the mixed-mode fracture of mortar joints and the shear failure of RC members. A systematic approach is presented here to calibrate the material parameters, and the accuracy of the nonlinear finite-element models has been evaluated with experimental data. The comparison of the numerical and experimental results indicates that the models can successfully capture the highly nonlinear behavior of the physical specimens and accurately predict their strength and failure mechanisms. The validated models have been used to assess the sensitivity of the numerical results to the modeling parameters and to identify the critical material parameters through a parametric study.
DEWEY : 624.17 ISSN : 0733-9445 En ligne : http://ascelibrary.org/sto/resource/1/jsendh/v136/i3/p285_s1?isAuthorized=no