Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Masoud Dehghandokht
Documents disponibles écrits par cet auteur
Affiner la rechercheModeling of rotary vane compressor applying artificial neural network / Sepehr Sanaye in International journal of refrigeration, Vol. 34 N° 3 (Mai 2011)
[article]
in International journal of refrigeration > Vol. 34 N° 3 (Mai 2011) . - pp. 764-772
Titre : Modeling of rotary vane compressor applying artificial neural network Titre original : Modélisation d'un compresseur rotatif à l'aide d'un réseau neuronal Type de document : texte imprimé Auteurs : Sepehr Sanaye, Auteur ; Masoud Dehghandokht, Auteur ; Hassan Mohammadbeigi, Auteur Année de publication : 2011 Article en page(s) : pp. 764-772 Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Neural network Rotary compressor Automobile Air conditioning Index. décimale : 621.5 Energie pneumatique. Machinerie et outils. Réfrigération Résumé : The thermal modeling of rotary vane compressor (RVC) was performed in this paper by applying Artificial Neural Network (ANN) method. In the first step, appropriate tests were designed and experimental data were collected during steady state operating condition of RVC in the experimental setup. Then parameters including refrigerant suction temperature and pressure, compressor rotating speed as well as refrigerant discharge pressure were adjusted.With these input values, the operating output parameters such as refrigerant mass flow rate and refrigerant discharge temperature were measured. In the second step, the experimental results were used to train ANN model for predicting RVC operating parameters such as refrigerant mass flow rate and compressor power consumption. These predicted operating parameters by ANN model agreed well with the experimental values with correlation coefficient in the range of 0.962–0.998, mean relative errors in the range of 2.79–7.36% as well as root mean square error (RMSE) 10.59 kg h−1 and 12 K for refrigerant mass flow rate and refrigerant discharge temperature, respectively. Results showed closer predictions with experimental results for ANN model in comparison with nolinear regression model. DEWEY : 621.5 ISSN : 0140-7007 En ligne : http://www.sciencedirect.com/science/article/pii/S0140700710002811 [article] Modeling of rotary vane compressor applying artificial neural network = Modélisation d'un compresseur rotatif à l'aide d'un réseau neuronal [texte imprimé] / Sepehr Sanaye, Auteur ; Masoud Dehghandokht, Auteur ; Hassan Mohammadbeigi, Auteur . - 2011 . - pp. 764-772.
Génie Mécanique
Langues : Anglais (eng)
in International journal of refrigeration > Vol. 34 N° 3 (Mai 2011) . - pp. 764-772
Mots-clés : Neural network Rotary compressor Automobile Air conditioning Index. décimale : 621.5 Energie pneumatique. Machinerie et outils. Réfrigération Résumé : The thermal modeling of rotary vane compressor (RVC) was performed in this paper by applying Artificial Neural Network (ANN) method. In the first step, appropriate tests were designed and experimental data were collected during steady state operating condition of RVC in the experimental setup. Then parameters including refrigerant suction temperature and pressure, compressor rotating speed as well as refrigerant discharge pressure were adjusted.With these input values, the operating output parameters such as refrigerant mass flow rate and refrigerant discharge temperature were measured. In the second step, the experimental results were used to train ANN model for predicting RVC operating parameters such as refrigerant mass flow rate and compressor power consumption. These predicted operating parameters by ANN model agreed well with the experimental values with correlation coefficient in the range of 0.962–0.998, mean relative errors in the range of 2.79–7.36% as well as root mean square error (RMSE) 10.59 kg h−1 and 12 K for refrigerant mass flow rate and refrigerant discharge temperature, respectively. Results showed closer predictions with experimental results for ANN model in comparison with nolinear regression model. DEWEY : 621.5 ISSN : 0140-7007 En ligne : http://www.sciencedirect.com/science/article/pii/S0140700710002811