Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Maxime Ducoulombier
Documents disponibles écrits par cet auteur
Affiner la rechercheCharge reduction experimental investigation of CO2 single-phase flow in a horizontal micro-channel with constant heat flux conditions / Maxime Ducoulombier in International journal of refrigeration, Vol. 34 N° 4 (Juin 2011)
[article]
in International journal of refrigeration > Vol. 34 N° 4 (Juin 2011) . - pp. 827-833
Titre : Charge reduction experimental investigation of CO2 single-phase flow in a horizontal micro-channel with constant heat flux conditions Titre original : Numéro spécial: étude expérimentale sur la réduction de la charge en CO2 en écoulement monophasique à l'intérieur d'un micro-canal horizontal sous des conditions de flux thermique constant Type de document : texte imprimé Auteurs : Maxime Ducoulombier, Auteur ; Stéphane Colasson, Auteur ; Philippe Haberschill, Auteur Année de publication : 2011 Article en page(s) : pp. 827-833 Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Carbon dioxide Micro-channel Pressure drop Heat transfer Single-phase flow Experimental Index. décimale : 621.5 Energie pneumatique. Machinerie et outils. Réfrigération Résumé : The use of carbon dioxide as alternative refrigerant in refrigeration plants and heat pumps has been focused recently. Through the specific properties of CO2, the use of very compact heat exchangers is relevant and the technology of micro-channel heat exchangers rises as a suitable solution. The experimental investigation of CO2 flow in a single micro-channel with an inner diameter of 529 μm is planned with an original test section. This test section is initially dedicated for further CO2 two-phase flow analysis. The local heat transfer coefficients are estimated with micro-thermocouples stuck on the micro-channel wall. The pressure drop is also measured. This paper presents the first results in single-phase pressure drop and heat transfer and exhibits promising coming data in two-phase flow pressure drop and heat transfer for mass velocity between 200 kg/m2/s and 1400 kg/m2/s and working saturation temperature between −10 °C and 5 °C. The results stress on the good accuracy of suitable classical laws to predict pressure drop and heat transfer in single-phase flow in micro-channel. DEWEY : 621.5 ISSN : 0140-7007 En ligne : http://www.sciencedirect.com/science/article/pii/S0140700711000260 [article] Charge reduction experimental investigation of CO2 single-phase flow in a horizontal micro-channel with constant heat flux conditions = Numéro spécial: étude expérimentale sur la réduction de la charge en CO2 en écoulement monophasique à l'intérieur d'un micro-canal horizontal sous des conditions de flux thermique constant [texte imprimé] / Maxime Ducoulombier, Auteur ; Stéphane Colasson, Auteur ; Philippe Haberschill, Auteur . - 2011 . - pp. 827-833.
Génie Mécanique
Langues : Anglais (eng)
in International journal of refrigeration > Vol. 34 N° 4 (Juin 2011) . - pp. 827-833
Mots-clés : Carbon dioxide Micro-channel Pressure drop Heat transfer Single-phase flow Experimental Index. décimale : 621.5 Energie pneumatique. Machinerie et outils. Réfrigération Résumé : The use of carbon dioxide as alternative refrigerant in refrigeration plants and heat pumps has been focused recently. Through the specific properties of CO2, the use of very compact heat exchangers is relevant and the technology of micro-channel heat exchangers rises as a suitable solution. The experimental investigation of CO2 flow in a single micro-channel with an inner diameter of 529 μm is planned with an original test section. This test section is initially dedicated for further CO2 two-phase flow analysis. The local heat transfer coefficients are estimated with micro-thermocouples stuck on the micro-channel wall. The pressure drop is also measured. This paper presents the first results in single-phase pressure drop and heat transfer and exhibits promising coming data in two-phase flow pressure drop and heat transfer for mass velocity between 200 kg/m2/s and 1400 kg/m2/s and working saturation temperature between −10 °C and 5 °C. The results stress on the good accuracy of suitable classical laws to predict pressure drop and heat transfer in single-phase flow in micro-channel. DEWEY : 621.5 ISSN : 0140-7007 En ligne : http://www.sciencedirect.com/science/article/pii/S0140700711000260