Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur M. Helinski
Documents disponibles écrits par cet auteur
Affiner la rechercheConsolidation in accreting sediments: Gibson's solution applied to backfilling of mine stopes / M. Fahey in Géotechnique, Vol. 60 N° 11 (Novembre 2010)
[article]
in Géotechnique > Vol. 60 N° 11 (Novembre 2010) . - pp. 877–882
Titre : Consolidation in accreting sediments: Gibson's solution applied to backfilling of mine stopes Type de document : texte imprimé Auteurs : M. Fahey, Auteur ; M. Helinski, Auteur ; A. Fourie, Auteur Année de publication : 2011 Article en page(s) : pp. 877–882 Note générale : Génie Civil Langues : Anglais (eng) Mots-clés : Consolidation Mining Index. décimale : 624 Constructions du génie civil et du bâtiment. Infrastructures. Ouvrages en terres. Fondations. Tunnels. Ponts et charpentes Résumé : There is increasing use of hydraulically placed tailings backfill in mined-out voids (‘stopes') in underground mining, with the backfill being retained in the stopes by barricades built across the stope access tunnels. The forces acting on these barricades depend on the degree of consolidation that occurs during the backfilling process. A solution to the problem of consolidation in a layer increasing in thickness owing to ongoing sedimentation was proposed by Gibson in 1958. This solution appears to be directly relevant to the stope backfilling process, although there are limitations in applying it. Using material properties from two mine sites, the applicability of the Gibson solution to stope filling is examined. In particular, since one of the basic assumptions of the Gibson solution (that c v remains constant during filling) is generally violated, the effect of having a varying c v is explored using numerical modelling. Finally, the limitations of applying the Gibson solution to the stope backfilling problem are discussed. These relate particularly to the three-dimensional nature of stope geometry and drainage (compared with the assumption of one-dimensional conditions in the Gibson solution) and the fact that cement is generally added to backfill, such that the analysis herein is only valid up to the start of cement hydration.
DEWEY : 624.15 ISSN : 0016-8505 En ligne : http://www.icevirtuallibrary.com/content/article/10.1680/geot.9.p.078 [article] Consolidation in accreting sediments: Gibson's solution applied to backfilling of mine stopes [texte imprimé] / M. Fahey, Auteur ; M. Helinski, Auteur ; A. Fourie, Auteur . - 2011 . - pp. 877–882.
Génie Civil
Langues : Anglais (eng)
in Géotechnique > Vol. 60 N° 11 (Novembre 2010) . - pp. 877–882
Mots-clés : Consolidation Mining Index. décimale : 624 Constructions du génie civil et du bâtiment. Infrastructures. Ouvrages en terres. Fondations. Tunnels. Ponts et charpentes Résumé : There is increasing use of hydraulically placed tailings backfill in mined-out voids (‘stopes') in underground mining, with the backfill being retained in the stopes by barricades built across the stope access tunnels. The forces acting on these barricades depend on the degree of consolidation that occurs during the backfilling process. A solution to the problem of consolidation in a layer increasing in thickness owing to ongoing sedimentation was proposed by Gibson in 1958. This solution appears to be directly relevant to the stope backfilling process, although there are limitations in applying it. Using material properties from two mine sites, the applicability of the Gibson solution to stope filling is examined. In particular, since one of the basic assumptions of the Gibson solution (that c v remains constant during filling) is generally violated, the effect of having a varying c v is explored using numerical modelling. Finally, the limitations of applying the Gibson solution to the stope backfilling problem are discussed. These relate particularly to the three-dimensional nature of stope geometry and drainage (compared with the assumption of one-dimensional conditions in the Gibson solution) and the fact that cement is generally added to backfill, such that the analysis herein is only valid up to the start of cement hydration.
DEWEY : 624.15 ISSN : 0016-8505 En ligne : http://www.icevirtuallibrary.com/content/article/10.1680/geot.9.p.078