Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Jeong Jin Hong
Documents disponibles écrits par cet auteur
Affiner la rechercheFault localization in batch processes through progressive principal component analysis modeling / Jeong Jin Hong in Industrial & engineering chemistry research, Vol. 50 N° 13 (Juillet 2011)
[article]
in Industrial & engineering chemistry research > Vol. 50 N° 13 (Juillet 2011) . - pp. 8153-8162
Titre : Fault localization in batch processes through progressive principal component analysis modeling Type de document : texte imprimé Auteurs : Jeong Jin Hong, Auteur ; Jie Zhang, Auteur ; Julian Morris, Auteur Année de publication : 2011 Article en page(s) : pp. 8153-8162 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Modeling Principal component analysis Batchwise Résumé : A technique for fault localization in batch processes using progressive principal component analysis (PCA) modeling is proposed in this paper. A PCA model is developed from normal process operation data and is used for online process monitoring. Once a fault is detected by the PCA model, process variables that are related to the fault are identified using contribution analysis. The time information on when abnormalities occurred in these variables is identified using a time series plot of the squared prediction errors (SPE) on these variables. These variables are then removed and another PCA model is developed using the remaining variables. If the faulty batch cannot be detected by the new PCA model, then the remaining variables are not related to the fault. If the faulty batch can still be detected by the new PCA model, then further variables associated with the fault are identified from SPE contribution analysis. The procedure is repeated until the faulty batch can no longer be detected using the remaining variables. Using the time information on when abnormalities presented in the variables associated with the fault, fault propagation paths can be established and the origin of the fault could be traced. The proposed method is tested on a benchmark simulated fed-batch penicillin production process, PenSim. The results demonstrate that the proposed method is particularly effective in isolating faults that have occurred on measured variables. For more complex faults that have occurred on unmeasured variables, the method can identify variables affected by the fault, and process knowledge is required to determine the fault. DEWEY : 660 ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=24332140 [article] Fault localization in batch processes through progressive principal component analysis modeling [texte imprimé] / Jeong Jin Hong, Auteur ; Jie Zhang, Auteur ; Julian Morris, Auteur . - 2011 . - pp. 8153-8162.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 50 N° 13 (Juillet 2011) . - pp. 8153-8162
Mots-clés : Modeling Principal component analysis Batchwise Résumé : A technique for fault localization in batch processes using progressive principal component analysis (PCA) modeling is proposed in this paper. A PCA model is developed from normal process operation data and is used for online process monitoring. Once a fault is detected by the PCA model, process variables that are related to the fault are identified using contribution analysis. The time information on when abnormalities occurred in these variables is identified using a time series plot of the squared prediction errors (SPE) on these variables. These variables are then removed and another PCA model is developed using the remaining variables. If the faulty batch cannot be detected by the new PCA model, then the remaining variables are not related to the fault. If the faulty batch can still be detected by the new PCA model, then further variables associated with the fault are identified from SPE contribution analysis. The procedure is repeated until the faulty batch can no longer be detected using the remaining variables. Using the time information on when abnormalities presented in the variables associated with the fault, fault propagation paths can be established and the origin of the fault could be traced. The proposed method is tested on a benchmark simulated fed-batch penicillin production process, PenSim. The results demonstrate that the proposed method is particularly effective in isolating faults that have occurred on measured variables. For more complex faults that have occurred on unmeasured variables, the method can identify variables affected by the fault, and process knowledge is required to determine the fault. DEWEY : 660 ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=24332140