Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Ali Abbas
Documents disponibles écrits par cet auteur
Affiner la rechercheUse of predictive solubility models for isothermal antisolvent crystallization modeling and optimization / David J. Widenski in Industrial & engineering chemistry research, Vol. 50 N° 13 (Juillet 2011)
[article]
in Industrial & engineering chemistry research > Vol. 50 N° 13 (Juillet 2011) . - pp. 8304-8313
Titre : Use of predictive solubility models for isothermal antisolvent crystallization modeling and optimization Type de document : texte imprimé Auteurs : David J. Widenski, Auteur ; Ali Abbas, Auteur ; Jose A. Romagnoli, Auteur Année de publication : 2011 Article en page(s) : pp. 8304-8313 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Optimization Crystallization Modeling Solubility Résumé : Predictive solubility models can be of great use for crystallization modeling and optimization, and can decrease the amount of experimental effort needed to create a robust crystallization model. In this study, predictive solubility models such as MOSCED, UNIFAC, NRTL-SAC, and the Jouyban-Acree model are compared against an empirical model for predicted solubility accuracy. The best models are subsequently compared against the empirical model for the antisolvent crystallization of acetaminophen in acetone, using water as the antisolvent. The effects of these solubility models on the predicted relative supersaturation, volume mean size, volume-percent crystal size distribution (CSD), and generated optimal antisolvent feed profiles are investigated. It was found that, for this system, only the NRTL-SAC and Jouyban-Acree solubility models were accurate enough to predict crystallization mean size and crystal size distributions. The Jouyban-Acree and NRTL-SAC solubility models respectively predicted end-volume mean-size differences up to 13% and 29% from the empirical model. When used to create optimal antisolvent feed profiles, the Jouyban-Acree and NRTL-SAC profiles produced results that varied up to 32% and 60%, respectively, from the desired objective. None of the predictive solubility models was accurate enough for the creation of optimal antisolvent feed profiles. DEWEY : 660 ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=24332156 [article] Use of predictive solubility models for isothermal antisolvent crystallization modeling and optimization [texte imprimé] / David J. Widenski, Auteur ; Ali Abbas, Auteur ; Jose A. Romagnoli, Auteur . - 2011 . - pp. 8304-8313.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 50 N° 13 (Juillet 2011) . - pp. 8304-8313
Mots-clés : Optimization Crystallization Modeling Solubility Résumé : Predictive solubility models can be of great use for crystallization modeling and optimization, and can decrease the amount of experimental effort needed to create a robust crystallization model. In this study, predictive solubility models such as MOSCED, UNIFAC, NRTL-SAC, and the Jouyban-Acree model are compared against an empirical model for predicted solubility accuracy. The best models are subsequently compared against the empirical model for the antisolvent crystallization of acetaminophen in acetone, using water as the antisolvent. The effects of these solubility models on the predicted relative supersaturation, volume mean size, volume-percent crystal size distribution (CSD), and generated optimal antisolvent feed profiles are investigated. It was found that, for this system, only the NRTL-SAC and Jouyban-Acree solubility models were accurate enough to predict crystallization mean size and crystal size distributions. The Jouyban-Acree and NRTL-SAC solubility models respectively predicted end-volume mean-size differences up to 13% and 29% from the empirical model. When used to create optimal antisolvent feed profiles, the Jouyban-Acree and NRTL-SAC profiles produced results that varied up to 32% and 60%, respectively, from the desired objective. None of the predictive solubility models was accurate enough for the creation of optimal antisolvent feed profiles. DEWEY : 660 ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=24332156