Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur David D. Apsley
Documents disponibles écrits par cet auteur
Affiner la rechercheCoupled wave action and shallow-water modelling for random wave runup on a slope / Maurice McCabe in Journal of hydraulic research, Vol. 49 N° 4 (Juillet/Août 2011)
[article]
in Journal of hydraulic research > Vol. 49 N° 4 (Juillet/Août 2011) . - pp. 515-522
Titre : Coupled wave action and shallow-water modelling for random wave runup on a slope Type de document : texte imprimé Auteurs : Maurice McCabe, Auteur ; Peter K. Stansby, Auteur ; David D. Apsley, Auteur Année de publication : 2011 Article en page(s) : pp. 515-522 Note générale : Hydraulique Langues : Anglais (eng) Mots-clés : Model coupling Random-breaking waves Shallow-water solver Wave action Wave runup Index. décimale : 627 Ingénierie des cours d'eau naturels, des ports, des rades et des cotes. Installations de navigation, de dragage, de récupération et de sauvetage. Barrages et centrales électriques hydrauliques Résumé : Wave runup statistics on beaches, dunes and coastal structures are needed for coastal management and engineering designs. Spectral wave energy–action models are widely used to predict wave propagation in deep and shallow water, incorporating the effects of refraction, bed friction, breaking and wave–wave interactions. To calculate nearshore runup or overtopping, wave-by-wave or phase-resolving modelling is necessary as spectral, phase-averaged models only give the spectral evolution and wave-induced setup. Herein, unidirectional wave propagation up a uniform slope predicted by the Simulating WAves Nearshore (SWAN) model is compared with experimental data. The surface elevation time series near the breaking position is then created from the predicted nearshore spectra and input to a non-linear shallow-water equation solver to give statistical runup predictions which are also compared with experimental data. Sensitivity to the offshore position for wave input is investigated. Runup statistics are shown to be reasonably well predicted.
DEWEY : 627 ISSN : 0022-1686 En ligne : http://www.tandfonline.com/doi/abs/10.1080/00221686.2011.566253 [article] Coupled wave action and shallow-water modelling for random wave runup on a slope [texte imprimé] / Maurice McCabe, Auteur ; Peter K. Stansby, Auteur ; David D. Apsley, Auteur . - 2011 . - pp. 515-522.
Hydraulique
Langues : Anglais (eng)
in Journal of hydraulic research > Vol. 49 N° 4 (Juillet/Août 2011) . - pp. 515-522
Mots-clés : Model coupling Random-breaking waves Shallow-water solver Wave action Wave runup Index. décimale : 627 Ingénierie des cours d'eau naturels, des ports, des rades et des cotes. Installations de navigation, de dragage, de récupération et de sauvetage. Barrages et centrales électriques hydrauliques Résumé : Wave runup statistics on beaches, dunes and coastal structures are needed for coastal management and engineering designs. Spectral wave energy–action models are widely used to predict wave propagation in deep and shallow water, incorporating the effects of refraction, bed friction, breaking and wave–wave interactions. To calculate nearshore runup or overtopping, wave-by-wave or phase-resolving modelling is necessary as spectral, phase-averaged models only give the spectral evolution and wave-induced setup. Herein, unidirectional wave propagation up a uniform slope predicted by the Simulating WAves Nearshore (SWAN) model is compared with experimental data. The surface elevation time series near the breaking position is then created from the predicted nearshore spectra and input to a non-linear shallow-water equation solver to give statistical runup predictions which are also compared with experimental data. Sensitivity to the offshore position for wave input is investigated. Runup statistics are shown to be reasonably well predicted.
DEWEY : 627 ISSN : 0022-1686 En ligne : http://www.tandfonline.com/doi/abs/10.1080/00221686.2011.566253