Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Jack Bokaris
Documents disponibles écrits par cet auteur
Affiner la rechercheMild-slope solver including non-linear dispersion and bottom friction / Jack Bokaris in Journal of hydraulic research, Vol. 49 N° 4 (Juillet/Août 2011)
[article]
in Journal of hydraulic research > Vol. 49 N° 4 (Juillet/Août 2011) . - pp. 547-553
Titre : Mild-slope solver including non-linear dispersion and bottom friction Type de document : texte imprimé Auteurs : Jack Bokaris, Auteur ; Kostas Anastasiou, Auteur Année de publication : 2011 Article en page(s) : pp. 547-553 Note générale : Hydraulique Langues : Anglais (eng) Mots-clés : Amplitude dispersion Bottom friction Celerity distortion Finite volume method Friction coefficient Implicit time integration mild-slope equation Roe's flux function Index. décimale : 627 Ingénierie des cours d'eau naturels, des ports, des rades et des cotes. Installations de navigation, de dragage, de récupération et de sauvetage. Barrages et centrales électriques hydrauliques Résumé : The processes of non-linear celerity distortion due to amplitude dispersion and energy dissipation due to bottom friction, whose effects are intensified in shallow waters, are incorporated into a finite volume solver of the mild-slope equation. Amplitude dispersion is taken into account in an iterative manner. The local energy dissipation due to bottom friction is computed using an existing model with appropriate expressions for the friction coefficient. Solutions to wave propagation problems are obtained on unstructured triangular meshes. Roe's flux function is used to evaluate the numerical fluxes at the triangular cell edges, and the conserved variables are updated implicitly in time. The incorporation of non-linear amplitude dispersion is found to improve significantly the agreement of computed results with laboratory data in non-linear wave propagation problems, while the effects of bottom friction are of secondary importance.
DEWEY : 627 ISSN : 0022-1686 En ligne : http://www.tandfonline.com/doi/abs/10.1080/00221686.2010.542881 [article] Mild-slope solver including non-linear dispersion and bottom friction [texte imprimé] / Jack Bokaris, Auteur ; Kostas Anastasiou, Auteur . - 2011 . - pp. 547-553.
Hydraulique
Langues : Anglais (eng)
in Journal of hydraulic research > Vol. 49 N° 4 (Juillet/Août 2011) . - pp. 547-553
Mots-clés : Amplitude dispersion Bottom friction Celerity distortion Finite volume method Friction coefficient Implicit time integration mild-slope equation Roe's flux function Index. décimale : 627 Ingénierie des cours d'eau naturels, des ports, des rades et des cotes. Installations de navigation, de dragage, de récupération et de sauvetage. Barrages et centrales électriques hydrauliques Résumé : The processes of non-linear celerity distortion due to amplitude dispersion and energy dissipation due to bottom friction, whose effects are intensified in shallow waters, are incorporated into a finite volume solver of the mild-slope equation. Amplitude dispersion is taken into account in an iterative manner. The local energy dissipation due to bottom friction is computed using an existing model with appropriate expressions for the friction coefficient. Solutions to wave propagation problems are obtained on unstructured triangular meshes. Roe's flux function is used to evaluate the numerical fluxes at the triangular cell edges, and the conserved variables are updated implicitly in time. The incorporation of non-linear amplitude dispersion is found to improve significantly the agreement of computed results with laboratory data in non-linear wave propagation problems, while the effects of bottom friction are of secondary importance.
DEWEY : 627 ISSN : 0022-1686 En ligne : http://www.tandfonline.com/doi/abs/10.1080/00221686.2010.542881